线索二叉树&哈夫曼编码

2020-04-29  本文已影响0人  ChenL

一、搜索二叉树

线索二叉树优点: 节约内存,便于搜索

/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Status;
typedef char CElemType;
/* 字符型以空格符为空 */
CElemType Nil='#';

二叉树构造

int indexs = 1;
typedef char String[24]; /*  0号单元存放串的长度 */
String str;
Status StrAssign(String T,char *chars)
{
    int i;
    if(strlen(chars)>MAXSIZE)
        return ERROR;
    else
    {
        T[0]=strlen(chars);
        for(i=1;i<=T[0];i++)
            T[i]=*(chars+i-1);
        return OK;
    }
}

//Link==0表示指向左右孩子指针
//Thread==1表示指向前驱或后继的线索
typedef enum {Link,Thread} PointerTag;

线索二叉树存储结点结构

typedef struct BiThrNode{
    
    //数据
    CElemType data;
    
    //左右孩子指针
    struct BiThrNode *lchild,*rchild;
    
    //左右标记
    PointerTag LTag;
    PointerTag RTag;
    
}BiThrNode,*BiThrTree;

打印

Status visit(CElemType e)
{
    printf("%c ",e);
    return OK;
}

1、构造二叉树
按照前序输入线索二叉树结点的值,构造二叉树T

Status CreateBiThrTree(BiThrTree *T){
    
    CElemType h;
    //scanf("%c",&h);
    //获取字符
    h = str[indexs++];
    
    if (h == Nil) {
        *T = NULL;
    }else{
        *T = (BiThrTree)malloc(sizeof(BiThrNode));
        if (!*T) {
            exit(OVERFLOW);
        }
        //生成根结点(前序)
        (*T)->data = h;
        
        //递归构造左子树
        CreateBiThrTree(&(*T)->lchild);
        //存在左孩子->将标记LTag设置为Link
        if ((*T)->lchild) (*T)->LTag = Link;
        
        //递归构造右子树
        CreateBiThrTree(&(*T)->rchild);
        //存在右孩子->将标记RTag设置为Link
        if ((*T)->rchild) (*T)->RTag = Link;
    }
    
    return OK;
}

2、中序遍历二叉树T, 将其中序线索化,Thrt指向头结点

BiThrTree pre; /* 全局变量,始终指向刚刚访问过的结点 */
/* 中序遍历进行中序线索化*/
void InThreading(BiThrTree p){
    
    /*
     InThreading(p->lchild);
     .....
     InThreading(p->rchild);
     */
    if (p) {
        //递归左子树线索化
        InThreading(p->lchild);
        //无左孩子
        if (!p->lchild) {
            //前驱线索
            p->LTag = Thread;
            //左孩子指针指向前驱
            p->lchild  = pre;
        }else
        {
            p->LTag = Link;
        }
        
        //前驱没有右孩子
        if (!pre->rchild) {
            //后继线索
            pre->RTag = Thread;
            //前驱右孩子指针指向后继(当前结点p)
            pre->rchild = p;
        }else
        {
            pre->RTag = Link;
        }
        
        //保持pre指向p的前驱
        pre = p;
        //递归右子树线索化
        InThreading(p->rchild);
    }
}

3、中序遍历二叉树T,并将其中序线索化,Thrt指向头结点

Status InOrderThreading(BiThrTree *Thrt , BiThrTree T){
    
    *Thrt=(BiThrTree)malloc(sizeof(BiThrNode));
    
    if (! *Thrt) {
        exit(OVERFLOW);
    }
    
    //建立头结点;
    (*Thrt)->LTag = Link;
    (*Thrt)->RTag = Thread;
    //右指针回指向
    (*Thrt)->rchild = (*Thrt);
    
    /* 若二叉树空,则左指针回指 */
    if (!T) {
        (*Thrt)->lchild=*Thrt;
    }else{
        
        (*Thrt)->lchild=T;
        pre=(*Thrt);
        
        //中序遍历进行中序线索化
        InThreading(T);
        
        //最后一个结点rchil 孩子
        pre->rchild = *Thrt;
        //最后一个结点线索化
        pre->RTag = Thread;
        (*Thrt)->rchild = pre;
        
    }
    return OK;
}

4、中序遍历二叉线索树T

Status InOrderTraverse_Thr(BiThrTree T){
    BiThrTree p;
    p=T->lchild; /* p指向根结点 */
    while(p!=T)
    { /* 空树或遍历结束时,p==T */
        while(p->LTag==Link)
            p=p->lchild;
        if(!visit(p->data)) /* 访问其左子树为空的结点 */
            return ERROR;
        while(p->RTag==Thread&&p->rchild!=T)
        {
            p=p->rchild;
            visit(p->data); /* 访问后继结点 */
        }
        p=p->rchild;
    }
    
    return OK;
}
int main(int argc, const char * argv[]) {
    // insert code here...
    printf("Hello, 线索化二叉树!\n");
    BiThrTree H,T;
    
    //StrAssign(str,"ABDH#K###E##CFI###G#J##");
    StrAssign(str,"ABDH##I##EJ###CF##G##");
    
    CreateBiThrTree(&T); /* 按前序产生二叉树 */
    InOrderThreading(&H,T); /* 中序遍历,并中序线索化二叉树 */
    InOrderTraverse_Thr(H);
    printf("\n\n");
    return 0;
}

二、哈夫曼编码

哈夫曼树的实现思路:

  1. 获取根据权值构建的哈夫曼树
  2. 循环遍历[0,n]个结点;
  3. 创建临时结点cd ,从根结点开始对⻬进⾏编码,左孩⼦为0,右孩⼦为1;
  4. 将编码后的结点存储haffCode[i]
  5. 设置HaffCode[i]的开始位置以及权值;
const int MaxValue = 10000;//初始设定的权值最大值
const int MaxBit = 4;//初始设定的最大编码位数
const int MaxN = 10;//初始设定的最大结点个数
typedef struct HaffNode{
    int weight;
    int flag;
    int parent;
    int leftChild;
    int rightChild;
}HaffNode;

typedef struct Code//存放哈夫曼编码的数据元素结构
{
    int bit[MaxBit];//数组
    int start;  //编码的起始下标
    int weight;//字符的权值
}Code;

1、根据权重值,构建哈夫曼树;

//{2,4,5,7}
//n = 4;
void Haffman(int weight[],int n,HaffNode *haffTree){
    
    int j,m1,m2,x1,x2;
    
    //1.哈夫曼树初始化
    //n个叶子结点. 2n-1
    for(int i = 0; i < 2*n-1;i++){
        
        if(i<n)
            haffTree[i].weight = weight[i];
        else
            haffTree[i].weight = 0;
        
        haffTree[i].parent = 0;
        haffTree[i].flag = 0;
        haffTree[i].leftChild = -1;
        haffTree[i].rightChild = -1;
    }

    //2.构造哈夫曼树haffTree的n-1个非叶结点
    for (int i = 0; i< n - 1; i++){
         m1 = m2 = MaxValue;
         x1 = x2 = 0;//存储最小值的下标
        //2,4,5,7
        for (j = 0; j< n + i; j++)//循环找出所有权重中,最小的二个值--morgan
        {
            if (haffTree[j].weight < m1 && haffTree[j].flag == 0)
            {
                m2 = m1;
                x2 = x1;
                m1 = haffTree[j].weight;
                x1 = j;
            } else if(haffTree[j].weight<m2 && haffTree[j].flag == 0)
            {
                m2 = haffTree[j].weight;
                x2 = j;
            }
        }
        
        //3.将找出的两棵权值最小的子树合并为一棵子树
        haffTree[x1].parent = n + i;
        haffTree[x2].parent = n + i;
        //将2个结点的flag 标记为1,表示已经加入到哈夫曼树中
        haffTree[x1].flag = 1;
        haffTree[x2].flag = 1;
        //修改n+i结点的权值
        haffTree[n + i].weight = haffTree[x1].weight + haffTree[x2].weight;
        //修改n+i的左右孩子的值
        haffTree[n + i].leftChild = x1;
        haffTree[n + i].rightChild = x2;
    }    
}

2、哈夫曼编码
由n个结点的哈夫曼树haffTree构造哈夫曼编码haffCode

void HaffmanCode(HaffNode haffTree[], int n, Code haffCode[])
{
    //1.创建一个结点cd
    Code *cd = (Code * )malloc(sizeof(Code));
    int child, parent;
    //2.求n个叶结点的哈夫曼编码
    for (int i = 0; i<n; i++)
    {
        //从0开始计数
        cd->start = 0;
        //取得编码对应权值的字符
        cd->weight = haffTree[i].weight;
        //当叶子结点i 为孩子结点.
        child = i;
        //找到child 的双亲结点;
        parent = haffTree[child].parent;
        //由叶结点向上直到根结点
        while (parent != 0)
        {
            if (haffTree[parent].leftChild == child)
                cd->bit[cd->start] = 0;//左孩子结点编码0
            else
                cd->bit[cd->start] = 1;//右孩子结点编码1
            //编码自增
            cd->start++;
            //当前双亲结点成为孩子结点
            child = parent;
            //找到双亲结点
            parent = haffTree[child].parent;
        }
        
         int temp = 0;

        for (int j = cd->start - 1; j >= 0; j--){
            temp = cd->start-j-1;
            haffCode[i].bit[temp] = cd->bit[j];
        }
      
        //把cd中的数据赋值到haffCode[i]中.
        //保存好haffCode 的起始位以及权值;
        haffCode[i].start = cd->start;
        //保存编码对应的权值
        haffCode[i].weight = cd->weight;
    }
}
int main(int argc, const char * argv[]) {
    // insert code here...
    printf("Hello, 哈夫曼编码!\n");
    int i, j, n = 4, m = 0;
    
    //权值
    int weight[] = {2,4,5,7};
    
    //初始化哈夫曼树, 哈夫曼编码
    HaffNode *myHaffTree = malloc(sizeof(HaffNode)*2*n-1);
    Code *myHaffCode = malloc(sizeof(Code)*n);
    
    //当前n > MaxN,表示超界. 无法处理.
    if (n>MaxN)
    {
        printf("定义的n越界,修改MaxN!");
        exit(0);
    }
    
    //1. 构建哈夫曼树
    Haffman(weight, n, myHaffTree);
    //2.根据哈夫曼树得到哈夫曼编码
    HaffmanCode(myHaffTree, n, myHaffCode);
    //3.
    for (i = 0; i<n; i++)
    {
        printf("Weight = %d\n",myHaffCode[i].weight);
        for (j = 0; j<myHaffCode[i].start; j++)
            printf("%d",myHaffCode[i].bit[j]);
        m = m + myHaffCode[i].weight*myHaffCode[i].start;
         printf("\n");
    }
    printf("Huffman's WPS is:%d\n",m);

    return 0;
}
上一篇 下一篇

猜你喜欢

热点阅读