Java CountDownLatch

2018-10-20  本文已影响0人  rabbit_coding

CountDownLatch 通过初始化一个计数器,通过countDown减少计数器,当计数器变成0时,才开始执行await之后的操作。在通过调用 countDown() 的线程打开入口前,所有调用 await 的线程都一直在入口处等待。用 N 初始化的 CountDownLatch 可以使一个线程在 N 个线程完成某项操作之前一直等待,或者使其在某项操作完成 N 次之前一直等待。

CountDownLatch 的一个有用特性是,它不要求调用 countDown 方法的线程等到计数到达零时才继续,而在所有线程都能通过之前,它只是阻止任何线程继续通过一个 await。

虽然,CountDownlatch与CyclicBarrier有那么点相似,但是他们还是存在一些区别的:

1、CountDownLatch的作用是允许1或N个线程等待其他线程完成执行;而CyclicBarrier则是允许N个线程相互等待。

2、 CountDownLatch的计数器无法被重置;CyclicBarrier的计数器可以被重置后使用,因此它被称为是循环的barrier。

CountDownLatch介绍

import java.util.Date;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class CountDownLatchTest {
    public static CountDownLatch countDownLatch = new CountDownLatch(2);
    private static ExecutorService executor = Executors.newFixedThreadPool(2);

    public static void countDown() {
        try {
            System.out.println(Thread.currentThread().getName() + "开始执行");
            Thread.sleep(10000);
            countDownLatch.countDown();
            System.out.println(Thread.currentThread().getName() + "执行完成");
        } catch (Exception e) {

        }

    }

    public static class Task implements Runnable {
        @Override
        public void run() {
            countDown();
        }
    }

    public static void main(String[] args) throws Exception {
        System.out.println(new Date() + ":主线程开始等待");
        for (int i = 0; i < 2; i++) {
            executor.execute(new Task());
        }
        countDownLatch.await();
        System.out.println(new Date() + ":主线程执行完");
    }
}
Sat Oct 20 18:03:49 CST 2018:主线程开始等待
pool-1-thread-1开始执行
pool-1-thread-2开始执行
pool-1-thread-1执行完成
pool-1-thread-2执行完成
Sat Oct 20 18:03:59 CST 2018:主线程执行

可以看到主线程会在await处阻塞,一直到其他两个线程调用countDown,将CountDownLatch减少到0,才会执行await之后的操作

CountDownLatch源码分析

初始化就比较简单了,主要就是去setState,countDown和await都是对这个state进行操作,同时我们会发现CountDownLatch使用的是共享锁

  public CountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }
    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;

        Sync(int count) {
            setState(count);
        }

        int getCount() {
            return getState();
        }

        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

        protected boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }
    }

CountDownLatch常用的2个方法,await和countDown,await在计数器不为0的时候,阻塞线程,将线程挂起,当countDown将计数器减少到0的时候,会唤起所以阻塞的线程。
await():使当前线程在锁存器倒计数至零之前一直等待,除非线程被中断。
await(long timeout, TimeUnit unit): 使当前线程在锁存器倒计数至零之前一直等待,除非线程被中断或超出了指定的等待时间

来看一下await方法如何实现阻塞线程的

    public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }
    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

acquireSharedInterruptibly()的作用是获取共享锁。如果在获取共享锁过程中线程中断则抛出InterruptedException异常。否则通过tryAcquireShared方法来尝试获取共享锁。如果成功直接返回,否则调用doAcquireSharedInterruptibly方法

    //CountDownLatch重写tryAcquireShared
    protected int tryAcquireShared(int acquires) {
        return (getState() == 0) ? 1 : -1;
    }
    private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

可以看到,await方法,通过判断计数器state是否为0 ,如果不为0,就doAcquireSharedInterruptibly,其实就是将当前线程封装成node,插入到CLH(等待锁的线程队列)尾部,根据tryAcquireShared(即state是否为0的条件),如果不为0,挂起线程,等待被唤醒

doAcquireSharedInterruptibly是AQS中的函数,在分析Semaphore源码https://www.jianshu.com/p/12093d997c02的时候分析过了,就不讲了

CountDownLatch的countDown()方法递减锁存器的计数,如果计数到达零,则释放所有等待的线程,doReleaseShared通过unparkSuccessor的LockSupport.unpark函数,将线程唤醒

    public void countDown() {
        sync.releaseShared(1);
    }
    public final boolean releaseShared(int arg) {
        //计数器为0的时候,释放所有的线程
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
    protected boolean tryReleaseShared(int releases) {
        // Decrement count; signal when transition to zero
        for (;;) {
            //当前计数器state
            int c = getState();
            if (c == 0)
                return false;
            //countDown减少计数器
            int nextc = c-1;
            //计数器为0,返回true
            if (compareAndSetState(c, nextc))
                return nextc == 0;
        }
    }
    private void doReleaseShared() {
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }

总结

CountDownLatch内部通过“共享锁”实现,在创建CountDownLatch时,需要传递一个int类型的state参数,该state参数为“锁状态”的初始值,该值表示着该“共享锁”可以同时被多少线程获取。当某个线程调用await方法时,如果state==0,表示可获取共享锁,否则一直处于等待直到获取为止。当线程调用countDown方法时,计数器state – 1。当在创建CountDownLatch时初始化的state参数,必须要调用state次的countDown方法才会使计数器state等于0,前面等待的线程才会继续运行。

上一篇下一篇

猜你喜欢

热点阅读