Notes for "Posterior consistency

2020-02-10  本文已影响0人  jjx323

H. Kekkonen, M. Lassas, S. Siltanen, Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators, Inverse Problems, 32, 2016, 085005

Page 10, line 6, Section 3 Generalised random variables

The connection between B_V and C_V is B_V = C_V (I-\Delta)^s : H^{s}\rightarrow H^{s}

Notes:
Consider \phi, \psi\in H^s(N), then we have
\langle C_V\phi, \psi \rangle_{H^{s}\times H^{-s}} = \langle \psi, C_V^* \psi\rangle_{H^{s}\times H^{-s}},
where C_V^* : H^{s}\rightarrow H^{-s}. Since (B_{V}\phi, \psi)_{H^s} = (\phi, B_V \psi)_{H^s} and (B_{V}\phi, \psi)_{H^s} = \langle C_V\phi, \psi \rangle_{H^{s}\times H^{-s}}, we obtain
\int_{N}(I-\Delta)^{s/2}\phi(x) (I-\Delta)^{s/2}B_V\psi(x) ds = \int_{N}\phi(x)C_V^{*} \psi(x)dx.
Hence, we find that
(I-\Delta)^{s}B_V = C_V^{*} : H^{s}\rightarrow H^{-s},
which implies
C_V = B_V (I-\Delta)^{s}.

Page 11, line (from end) 7, Section 3.2

Condition B_U \in \mathfrak{C}^{1}(H^{\tau}) guarantees that \mathbb{E}(U, U)_{H^{\tau}} < \infty.

Notes:
Taking (\lambda_j, \{\varphi_{j}\})_{j=1}^{\infty} be eigensystem of B_U on H^{\tau}, we have
\begin{align} \mathbb{E}(U,U)_{H^{\tau}} & = \mathbb{E}\sum_{j=1}^{\infty}(U,\varphi_{j})(U,\varphi_{j})=\sum_{j=1}^{\infty}\mathbb{E}{((U,\varphi_{j})_{H^{\tau}}(U,\varphi_{j})_{H^{\tau}})} \\ & = \sum_{j=1}^{\infty}(B_U \varphi_{j}, \varphi_{j})_{H^{\tau}} = \sum_{j=1}^{\infty}\lambda_{j} < \infty, \end{align}
which is just the required estimation.
Here, in this part, we may see C_U : H^{-\tau} \rightarrow H^{\tau} (\tau\leq r) and B_U : H^{\tau} \rightarrow H^{\tau}, which coincides with formula (3.3) and (3.4) on page 10. Taking \nu=\nu_k in the first formula on page 12, we have
k = N(\nu_k) \sim cv_k^{\frac{d}{2(r-\tau)}}(1+O(\nu_k^{-\frac{1}{2(r-\tau)}})).
Question: The operator B_U^{-1} is a self-adjoint elliptic operator with smooth coefficients (defined on closed manifold), the eigenvalues are irrelevant to the definition function space of the operator B_U^{-1} ?

Proof of Lemma 3, Page 15

\ldots and we can write
B_0 = B_0 ((A^* A)B_1 - K_2) = B_1 - B_0 K_2.

Notes:
Here, we assume that t, t_0 > 0. By my understanding, the equality means that for f\in H^{r+2t_0}\subset H^{r} we have
B_0(f) = B_0((A^* A)B_1)(f) - B_0 K_2(f) = B_0 A^* A B_1(f) - B_0 K_2 (f) .
Since B_1(f) \in H^{r}, we obtain B_0 A^* A B_1(f) = B_1 (f) and
B_0(f) = B_1(f) + B_0K_2(f)
holds for every f\in H^{r+2t_0}. Because for any r\in \mathbb{R}, we can deduce that the corresponding B_0 : C^{\infty} \rightarrow C^{\infty} is continuous. Hence, we find that
B = B_1 \, \text{mod} \, \Psi^{-\infty}
holds on H^{r}(N) for any r\in \mathbb{R}. That is to say,
B = B_1 \, \text{mod} \, \Psi^{-\infty}
holds on space \mathcal{D}', which implies B\in H\Psi^{2t_0, 2t}.


2020/02

上一篇 下一篇

猜你喜欢

热点阅读