源码的解析Android日记android网络开发

android面试题-okhttp内核剖析

2017-05-05  本文已影响10076人  小怪兽打葫芦娃

Android程序员面试宝典

okhttp源码特别特别复杂,类涉及较多,导致本文非常长,我相信没有几个人能把本文看完,所以特意录制了跟文章同步的视频。

自定义控件

联网

工具

数据库

源码分析相关面试题

Activity相关面试题

Service相关面试题

与XMPP相关面试题

与性能优化相关面试题

与登录相关面试题

与开发相关面试题

与人事相关面试题

本文配套视频:

基本使用

从使用方法出发,首先是怎么使用,其次是我们使用的功能在内部是如何实现的.建议大家下载 OkHttp 源码之后,跟着本文,过一遍源码。
通过小栗子开启今天的源码分析:

OkHttpClient client = new OkHttpClient();

String run(String url) throws IOException {
  Request request = new Request.Builder()
      .url(url)
      .build();

  Response response = client.newCall(request).execute();
  return response.body().string();
}

Request、Response、Call 基本概念

上面的代码中涉及到几个常用的类:Request、Response和Call。下面分别介绍:

Request

每一个HTTP请求包含一个URL、一个方法(GET或POST或其他)、一些HTTP头。请求还可能包含一个特定内容类型的数据类的主体部分。

Response

响应是对请求的回复,包含状态码、HTTP头和主体部分。

Call

OkHttp使用Call抽象出一个满足请求的模型,尽管中间可能会有多个请求或响应。执行Call有两种方式,同步或异步

第一步:创建 OkHttpClient对象,进行源码分析:

OkHttpClient client = new OkHttpClient();`

通过okhttp源码分析,直接创建的 OkHttpClient对象并且默认构造builder对象进行初始化

public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
  public OkHttpClient() {
       this(new Builder());
  }
  OkHttpClient(Builder builder) {
    this.dispatcher = builder.dispatcher;
    this.proxy = builder.proxy;
    this.protocols = builder.protocols;
    this.connectionSpecs = builder.connectionSpecs;
    this.interceptors = Util.immutableList(builder.interceptors);
    this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
    this.eventListenerFactory = builder.eventListenerFactory;
    this.proxySelector = builder.proxySelector;
    this.cookieJar = builder.cookieJar;
    this.cache = builder.cache;
    this.internalCache = builder.internalCache;
    this.socketFactory = builder.socketFactory;

    boolean isTLS = false;
    ......

    this.hostnameVerifier = builder.hostnameVerifier;
    this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
        certificateChainCleaner);
    this.proxyAuthenticator = builder.proxyAuthenticator;
    this.authenticator = builder.authenticator;
    this.connectionPool = builder.connectionPool;
    this.dns = builder.dns;
    this.followSslRedirects = builder.followSslRedirects;
    this.followRedirects = builder.followRedirects;
    this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
    this.connectTimeout = builder.connectTimeout;
    this.readTimeout = builder.readTimeout;
    this.writeTimeout = builder.writeTimeout;
    this.pingInterval = builder.pingInterval;
  }
}

第二步:接下来发起 HTTP 请求

Request request = new Request.Builder().url("url").build();
okHttpClient.newCall(request).enqueue(new Callback() {
  @Override
  public void onFailure(Call call, IOException e) {

 }

@Override
public void onResponse(Call call, Response response) throws IOException {

}
});

第二步:代码流程分析:

Request request = new Request.Builder().url("url").build();

初始化构建者模式和请求对象,并且用URL替换Web套接字URL。

public final class Request {
    public Builder() {
      this.method = "GET";
      this.headers = new Headers.Builder();
    }
    public Builder url(String url) {
      ......

      // Silently replace web socket URLs with HTTP URLs.
      if (url.regionMatches(true, 0, "ws:", 0, 3)) {
        url = "http:" + url.substring(3);
      } else if (url.regionMatches(true, 0, "wss:", 0, 4)) {
        url = "https:" + url.substring(4);
      }

      HttpUrl parsed = HttpUrl.parse(url);
      ......
      return url(parsed);
    }
    public Request build() {
      ......
      return new Request(this);
    }
}

第三步:方法解析:

okHttpClient.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {

}

@Override
public void onResponse(Call call, Response response) throws IOException {

}
});

源码分析:

public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
   @Override 
   public Call newCall(Request request) {
    return new RealCall(this, request, false /* for web socket */);
   }



}

RealCall实现了Call.Factory接口创建了一个RealCall的实例,而RealCall是Call接口的实现。

异步请求的执行流程

final class RealCall implements Call {
   @Override 
   public void enqueue(Callback responseCallback) {
   synchronized (this) {
   if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
   }
    captureCallStackTrace();
    client.dispatcher().enqueue(new AsyncCall(responseCallback));
  }
}

由以上源码得知:

1) 检查这个 call 是否已经被执行了,每个 call 只能被执行一次,如果想要一个完全一样的 call,可以利用 call#clone 方法进行克隆。

2)利用 client.dispatcher().enqueue(this) 来进行实际执行,dispatcher 是刚才看到的 OkHttpClient.Builder 的成员之一

3)AsyncCall是RealCall的一个内部类并且继承NamedRunnable,那么首先看NamedRunnable类是什么样的,如下:

public abstract class NamedRunnable implements Runnable {
  ......

  @Override 
  public final void run() {
   ......
    try {
      execute();
    }
    ......
  }

  protected abstract void execute();
}

可以看到NamedRunnable实现了Runnbale接口并且是个抽象类,其抽象方法是execute(),该方法是在run方法中被调用的,这也就意味着NamedRunnable是一个任务,并且其子类应该实现execute方法。下面再看AsyncCall的实现:

final class AsyncCall extends NamedRunnable {
    private final Callback responseCallback;

    AsyncCall(Callback responseCallback) {
      super("OkHttp %s", redactedUrl());
      this.responseCallback = responseCallback;
    }

    ......
final class RealCall implements Call {
  @Override protected void execute() {
  boolean signalledCallback = false;
  try {
     Response response = getResponseWithInterceptorChain();
  if (retryAndFollowUpInterceptor.isCanceled()) {
     signalledCallback = true;
     responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
  } else {
    signalledCallback = true;
    responseCallback.onResponse(RealCall.this, response);
  }
 } catch (IOException e) {
  ......
  responseCallback.onFailure(RealCall.this, e);
        
} finally {
    client.dispatcher().finished(this);
  }
}

AsyncCall实现了execute方法,首先是调用getResponseWithInterceptorChain()方法获取响应,然后获取成功后,就调用回调的onReponse方法,如果失败,就调用回调的onFailure方法。最后,调用Dispatcher的finished方法。

关键代码:

responseCallback.onFailure(RealCall.this, new IOException("Canceled"));

responseCallback.onResponse(RealCall.this, response);

走完这两句代码会进行回调到刚刚我们初始化Okhttp的地方,如下:

okHttpClient.newCall(request).enqueue(new Callback() {
   @Override
   public void onFailure(Call call, IOException e) {

   }

   @Override
   public void onResponse(Call call, Response response) throws IOException {

   }
});

核心重点类Dispatcher线程池介绍

public final class Dispatcher {
  /** 最大并发请求数为64 */
  private int maxRequests = 64;
  /** 每个主机最大请求数为5 */
  private int maxRequestsPerHost = 5;

  /** 线程池 */
  private ExecutorService executorService;

  /** 准备执行的请求 */
  private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();

  /** 正在执行的异步请求,包含已经取消但未执行完的请求 */
  private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();

  /** 正在执行的同步请求,包含已经取消单未执行完的请求 */
  private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();

在OkHttp,使用如下构造了单例线程池

public synchronized ExecutorService executorService() {
    if (executorService == null) {
      executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
          new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
    }
    return executorService;
  }

构造一个线程池ExecutorService:

executorService = new ThreadPoolExecutor(
//corePoolSize 最小并发线程数,如果是0的话,空闲一段时间后所有线程将全部被销毁
    0, 
//maximumPoolSize: 最大线程数,当任务进来时可以扩充的线程最大值,当大于了这个值就会根据丢弃处理机制来处理
    Integer.MAX_VALUE, 
//keepAliveTime: 当线程数大于corePoolSize时,多余的空闲线程的最大存活时间
    60, 
//单位秒
    TimeUnit.SECONDS,
//工作队列,先进先出
    new SynchronousQueue<Runnable>(),   
//单个线程的工厂         
   Util.threadFactory("OkHttp Dispatcher", false));

可以看出,在Okhttp中,构建了一个核心为[0, Integer.MAX_VALUE]的线程池,它不保留任何最小线程数,随时创建更多的线程数,当线程空闲时只能活60秒,它使用了一个不存储元素的阻塞工作队列,一个叫做"OkHttp Dispatcher"的线程工厂。

也就是说,在实际运行中,当收到10个并发请求时,线程池会创建十个线程,当工作完成后,线程池会在60s后相继关闭所有线程。

synchronized void enqueue(AsyncCall call) {
    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
      runningAsyncCalls.add(call);
      executorService().execute(call);
    } else {
      readyAsyncCalls.add(call);
    }
  }

从上述源码分析,如果当前还能执行一个并发请求,则加入 runningAsyncCalls ,立即执行,否则加入 readyAsyncCalls 队列。

Dispatcher线程池总结

1)调度线程池Disptcher实现了高并发,低阻塞的实现
2)采用Deque作为缓存,先进先出的顺序执行
3)任务在try/finally中调用了finished函数,控制任务队列的执行顺序,而不是采用锁,减少了编码复杂性提高性能

这里是分析OkHttp源码,并不详细讲线程池原理,如对线程池不了解请参考如下链接

点我,线程池原理,在文章性能优化最后有视频对线程池原理讲解


 try {
        Response response = getResponseWithInterceptorChain();
        if (retryAndFollowUpInterceptor.isCanceled()) {
          signalledCallback = true;
          responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
        } else {
          signalledCallback = true;
          responseCallback.onResponse(RealCall.this, response);
        }
      } finally {
        client.dispatcher().finished(this);
      }

当任务执行完成后,无论是否有异常,finally代码段总会被执行,也就是会调用Dispatcher的finished函数

 void finished(AsyncCall call) {
    finished(runningAsyncCalls, call, true);
  }


从上面的代码可以看出,第一个参数传入的是正在运行的异步队列,第三个参数为true,下面再看有是三个参数的finished方法:

private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
    int runningCallsCount;
    Runnable idleCallback;
    synchronized (this) {
      if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
      if (promoteCalls) promoteCalls();
      runningCallsCount = runningCallsCount();
      idleCallback = this.idleCallback;
    }

    if (runningCallsCount == 0 && idleCallback != null) {
      idleCallback.run();
    }
  }

打开源码,发现它将正在运行的任务Call从队列runningAsyncCalls中移除后,获取运行数量判断是否进入了Idle状态,接着执行promoteCalls()函数,下面是promoteCalls()方法:

private void promoteCalls() {
    if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
    if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.

    for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
      AsyncCall call = i.next();

      if (runningCallsForHost(call) < maxRequestsPerHost) {
        i.remove();
        runningAsyncCalls.add(call);
        executorService().execute(call);
      }

      if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
    }
  }

主要就是遍历等待队列,并且需要满足同一主机的请求小于maxRequestsPerHost时,就移到运行队列中并交给线程池运行。就主动的把缓存队列向前走了一步,而没有使用互斥锁等复杂编码

核心重点getResponseWithInterceptorChain方法

Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());
    interceptors.add(retryAndFollowUpInterceptor);
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(
        interceptors, null, null, null, 0, originalRequest);
    return chain.proceed(originalRequest);
  }

1)在配置 OkHttpClient 时设置的 interceptors;
2)负责失败重试以及重定向的 RetryAndFollowUpInterceptor;
3)负责把用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应的 BridgeInterceptor;
4)负责读取缓存直接返回、更新缓存的 CacheInterceptor;
5)负责和服务器建立连接的 ConnectInterceptor;
6)配置 OkHttpClient 时设置的 networkInterceptors;
7)负责向服务器发送请求数据、从服务器读取响应数据的 CallServerInterceptor。

OkHttp的这种拦截器链采用的是责任链模式,这样的好处是将请求的发送和处理分开,并且可以动态添加中间的处理方实现对请求的处理、短路等操作。

从上述源码得知,不管okhttp有多少拦截器最后都会走,如下方法:

Interceptor.Chain chain = new RealInterceptorChain(
        interceptors, null, null, null, 0, originalRequest);
return chain.proceed(originalRequest);

从方法名字基本可以猜到是干嘛的,调用 chain.proceed(originalRequest); 将request传递进来,从拦截器链里拿到返回结果。那么拦截器Interceptor是干嘛的,Chain是干嘛的呢?继续往下看RealInterceptorChain

RealInterceptorChain类

下面是RealInterceptorChain的定义,该类实现了Chain接口,在getResponseWithInterceptorChain调用时好几个参数都传的null。

public final class RealInterceptorChain implements Interceptor.Chain {

   public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
        HttpCodec httpCodec, RealConnection connection, int index, Request request) {
        this.interceptors = interceptors;
        this.connection = connection;
        this.streamAllocation = streamAllocation;
        this.httpCodec = httpCodec;
        this.index = index;
        this.request = request;
  }
  ......

 @Override 
 public Response proceed(Request request) throws IOException {
    return proceed(request, streamAllocation, httpCodec, connection);
  }

  public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
      RealConnection connection) throws IOException {
    if (index >= interceptors.size()) throw new AssertionError();

    calls++;

    ......

    // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(
        interceptors, streamAllocation, httpCodec, connection, index + 1, request);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);

   ......

    return response;
  }

  protected abstract void execute();
}

主要看proceed方法,proceed方法中判断index(此时为0)是否大于或者等于client.interceptors(List )的大小。由于httpStream为null,所以首先创建next拦截器链,主需要把索引置为index+1即可;然后获取第一个拦截器,调用其intercept方法。

Interceptor 代码如下:

public interface Interceptor {
  Response intercept(Chain chain) throws IOException;

  interface Chain {
    Request request();

    Response proceed(Request request) throws IOException;

    Connection connection();
  }
}

BridgeInterceptor

BridgeInterceptor从用户的请求构建网络请求,然后提交给网络,最后从网络响应中提取出用户响应。从最上面的图可以看出,BridgeInterceptor实现了适配的功能。下面是其intercept方法:

public final class BridgeInterceptor implements Interceptor {
  ......

@Override 
public Response intercept(Chain chain) throws IOException {
  Request userRequest = chain.request();
  Request.Builder requestBuilder = userRequest.newBuilder();

 RequestBody body = userRequest.body();
 //如果存在请求主体部分,那么需要添加Content-Type、Content-Length首部
 if (body != null) {
      MediaType contentType = body.contentType();
      if (contentType != null) {
        requestBuilder.header("Content-Type", contentType.toString());
      }

      long contentLength = body.contentLength();
      if (contentLength != -1) {
        requestBuilder.header("Content-Length", Long.toString(contentLength));
        requestBuilder.removeHeader("Transfer-Encoding");
      } else {
        requestBuilder.header("Transfer-Encoding", "chunked");
        requestBuilder.removeHeader("Content-Length");
      }
    }

    if (userRequest.header("Host") == null) {
      requestBuilder.header("Host", hostHeader(userRequest.url(), false));
    }

    if (userRequest.header("Connection") == null) {
      requestBuilder.header("Connection", "Keep-Alive");
    }

    // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
    // the transfer stream.
    boolean transparentGzip = false;
    if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
      transparentGzip = true;
      requestBuilder.header("Accept-Encoding", "gzip");
    }

    List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
    if (!cookies.isEmpty()) {
      requestBuilder.header("Cookie", cookieHeader(cookies));
    }

  if (userRequest.header("User-Agent") == null) {
      requestBuilder.header("User-Agent", Version.userAgent());
  }

Response networkResponse = chain.proceed(requestBuilder.build());

HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());

Response.Builder responseBuilder = networkResponse.newBuilder()
        .request(userRequest);

    if (transparentGzip
        && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
        && HttpHeaders.hasBody(networkResponse)) {
      GzipSource responseBody = new GzipSource(networkResponse.body().source());
      Headers strippedHeaders = networkResponse.headers().newBuilder()
          .removeAll("Content-Encoding")
          .removeAll("Content-Length")
          .build();
      responseBuilder.headers(strippedHeaders);
      responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
    }

    return responseBuilder.build();
  }

  /** Returns a 'Cookie' HTTP request header with all cookies, like {@code a=b; c=d}. */
  private String cookieHeader(List<Cookie> cookies) {
    StringBuilder cookieHeader = new StringBuilder();
    for (int i = 0, size = cookies.size(); i < size; i++) {
      if (i > 0) {
        cookieHeader.append("; ");
      }
      Cookie cookie = cookies.get(i);
      cookieHeader.append(cookie.name()).append('=').append(cookie.value());
    }
    return cookieHeader.toString();
  }
}

从上面的代码可以看出,首先获取原请求,然后在请求中添加头,比如Host、Connection、Accept-Encoding参数等,然后根据看是否需要填充Cookie,在对原始请求做出处理后,使用chain的procced方法得到响应,接下来对响应做处理得到用户响应,最后返回响应。接下来再看下一个拦截器ConnectInterceptor的处理。

public final class ConnectInterceptor implements Interceptor {
  ......

 @Override 
 public Response intercept(Chain chain) throws IOException {
 RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
StreamAllocation streamAllocation = realChain.streamAllocation();

 // We need the network to satisfy this request. Possibly for validating a conditional GET.
 boolean doExtensiveHealthChecks = !request.method().equals("GET");
 HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);
 RealConnection connection = streamAllocation.connection();

 return realChain.proceed(request, streamAllocation, httpCodec, connection);
  }
}

实际上建立连接就是创建了一个 HttpCodec 对象,它利用 Okio 对 Socket 的读写操作进行封装,Okio 以后有机会再进行分析,现在让我们对它们保持一个简单地认识:它对 java.io 和 java.nio 进行了封装,让我们更便捷高效的进行 IO 操作。

CallServerInterceptor

CallServerInterceptor是拦截器链中最后一个拦截器,负责将网络请求提交给服务器。它的intercept方法实现如下:

@Override 
public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    HttpCodec httpCodec = realChain.httpStream();
    StreamAllocation streamAllocation = realChain.streamAllocation();
    RealConnection connection = (RealConnection) realChain.connection();
    Request request = realChain.request();

    long sentRequestMillis = System.currentTimeMillis();
    httpCodec.writeRequestHeaders(request);

    Response.Builder responseBuilder = null;
    if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
      // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
      // Continue" response before transmitting the request body. If we don't get that, return what
      // we did get (such as a 4xx response) without ever transmitting the request body.
      if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
        httpCodec.flushRequest();
        responseBuilder = httpCodec.readResponseHeaders(true);
      }

      if (responseBuilder == null) {
        // Write the request body if the "Expect: 100-continue" expectation was met.
        Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength());
        BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
        request.body().writeTo(bufferedRequestBody);
        bufferedRequestBody.close();
      } else if (!connection.isMultiplexed()) {
        // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection from
        // being reused. Otherwise we're still obligated to transmit the request body to leave the
        // connection in a consistent state.
        streamAllocation.noNewStreams();
      }
    }

    httpCodec.finishRequest();

    if (responseBuilder == null) {
      responseBuilder = httpCodec.readResponseHeaders(false);
    }

    Response response = responseBuilder
        .request(request)
        .handshake(streamAllocation.connection().handshake())
        .sentRequestAtMillis(sentRequestMillis)
        .receivedResponseAtMillis(System.currentTimeMillis())
        .build();

    int code = response.code();
    if (forWebSocket && code == 101) {
      // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
      response = response.newBuilder()
          .body(Util.EMPTY_RESPONSE)
          .build();
    } else {
      response = response.newBuilder()
          .body(httpCodec.openResponseBody(response))
          .build();
    }

    if ("close".equalsIgnoreCase(response.request().header("Connection"))
        || "close".equalsIgnoreCase(response.header("Connection"))) {
      streamAllocation.noNewStreams();
    }

    if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
      throw new ProtocolException(
          "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
    }

    return response;
  }

从上面的代码中可以看出,首先获取HttpStream对象,然后调用writeRequestHeaders方法写入请求的头部,然后判断是否需要写入请求的body部分,最后调用finishRequest()方法将所有数据刷新给底层的Socket,接下来尝试调用readResponseHeaders()方法读取响应的头部,然后再调用openResponseBody()方法得到响应的body部分,最后返回响应。

最后总结

OkHttp的底层是通过Java的Socket发送HTTP请求与接受响应的(这也好理解,HTTP就是基于TCP协议的),但是OkHttp实现了连接池的概念,即对于同一主机的多个请求,其实可以公用一个Socket连接,而不是每次发送完HTTP请求就关闭底层的Socket,这样就实现了连接池的概念。而OkHttp对Socket的读写操作使用的OkIo库进行了一层封装。

微信公众号名称:Android干货程序员

上一篇下一篇

猜你喜欢

热点阅读