学习小组DAY6笔记——shoan
2020-11-04 本文已影响0人
shoan078
R包
R包的加载
library(包)
require(包)
安装+加载
示例:
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
install.packages("dplyr")
library(dplyr)
数据来源:内置数据集iris的简化版
test <- iris[c(1:2,51:52,101:102),]
dplyr的五个基础函数
mutate(),新增列
![](https://img.haomeiwen.com/i23965623/e3d4a910543082d5.png)
select(),按列筛选
- 按列号筛选
select(test,1)#筛选第一列
![](https://img.haomeiwen.com/i23965623/9ce746e846d97fe3.png)
select(test,c(1,5))#筛选第一列与第五列
![](https://img.haomeiwen.com/i23965623/ec186a144241a799.png)
select(test,Sepal.Length)#筛选Sepal.Length这一列
- 按列名筛选
select(test, Petal.Length, Petal.Width)#筛选Petal.Length, Petal.Width两列
![](https://img.haomeiwen.com/i23965623/0935a709a0932595.png)
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))#筛选Petal.Length, Petal.Width两列
![](https://img.haomeiwen.com/i23965623/bb8a7302c62b9965.png)
filter()筛选行
filter(test, Species == "setosa")#筛选为setosa的行
![](https://img.haomeiwen.com/i23965623/8e1d29cd4bb8e8dd.png)
filter(test, Species == "setosa"&Sepal.Length > 5 )#筛选setosa且sepal length>5的行
![](https://img.haomeiwen.com/i23965623/038687980ad9ef07.png)
filter(test, Species %in% c("setosa","versicolor"))#筛选行为setosa以及versicolor的行
![](https://img.haomeiwen.com/i23965623/bafc1ac69af811c1.png)
arrange(),按某1列或某几列对整个表格进行排序
arrange(test, Sepal.Length)#默认从小到大排序
![](https://img.haomeiwen.com/i23965623/68574acb61f7db0b.png)
arrange(test, desc(Sepal.Length))#用desc从大到小
![](https://img.haomeiwen.com/i23965623/b0536a9dea387419.png)
.summarise():汇总
对数据进行汇总操作,结合group_by使用实用性强
summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
![](https://img.haomeiwen.com/i23965623/fb1f3e5d25b1c002.png)
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
![](https://img.haomeiwen.com/i23965623/5f9dc994d0d841a7.png)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
![](https://img.haomeiwen.com/i23965623/5ed44b9b9bd7a963.png)