数据仓库

2019-08-22  本文已影响0人  康俊1024

前言

英文名称为Data Warehouse,可简写为DW或DWH。数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Support)。它出于分析性报告和决策支持目的而创建。数据仓库本身并不“生产”任何数据,同时自身也不需要“消费”任何的数据,数据来源于外部,并且开放给外部应用,这也是为什么叫“仓库”,而不叫“工厂”的原因。数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,决不是所谓的“大型数据库”。

数据仓库的主要特征

数据仓库是面向主题的(Subject-Oriented )、集成的(Integrated)、非易失的(Non-Volatile)和时变的(Time-Variant )数据集合,用以支持管理决策。

数据仓库与数据库区别

  1. 数据库是面向事务设计的,数据仓库是面向主题设计的。
  2. 数据库一般存储业务数据,数据仓库存储的一般是历史数据。
  3. 数据库设计是尽量避免冗余,一般针对某一业务应用进行设计,数据仓库在设计是有意引入冗余,依照分析需求,分析维度、分析指标进行设计。
  4. 数据库是为捕获数据而设计,数据仓库是为分析数据而设计

数据仓库分层架构

按照数据流入流出的过程,数据仓库架构可分为三层——源数据、数据仓库、数据应用。
数据仓库的数据来源于不同的源数据,并提供多样的数据应用,数据自下而上流入数据仓库后向上层开放应用,而数据仓库只是中间集成化数据管理的一个平台。

数据仓库元数据管理

元数据(Meta Date),主要记录数据仓库中模型的定义、各层级间的映射关系、监控数据仓库的数据状态及ETL的任务运行状态。其主要目的是使数据仓库的设计、部署、操作和管理能达成协同和一致。元数据不仅定义了数据仓库中数据的模式、来源、抽取和转换规则等,而且是整个数据仓库系统运行的基础,元数据把数据仓库系统中各个松散的组件联系起来,组成了一个有机的整体。

上一篇下一篇

猜你喜欢

热点阅读