注释和富集转录组转录组

clusterProfiler | GO 和 KEGG 分析

2023-04-04  本文已影响0人  iBioinformatics

clusterProfiler 是业界大神Y叔写的一个R包,可以用来做各种富集分析,如GO、KEGG、DO(Disease Ontology analysis)、Reactome pathway analysis以及GSEA富集分析等。而除了富集分析,他还可以非常方便的对富集分析结果进行可视化。

这里使用clusterProfiler进行GO、KEGG以及GSEA富集分析。

1、安装clusterProfiler

安装clusterProfiler:

> source("http://bioconductor.org/biocLite.R")
> biocLite('clusterProfiler')

2、ID转换

对于没有转换的gene ID,clusterProfiler也提供了bitr方法进行转换ID:

Usage:
  bitr(geneID, fromType, toType, OrgDb, drop = TRUE)

Arguments
  geneID       input gene id
  fromType     input id type
  toType       output id type
  OrgDb        annotation db
  drop         drop NA or not

# example:
> x <- c("GPX3",  "GLRX",   "LBP",   "CRYAB", "DEFB1", "HCLS1",   "SOD2",   "HSPA2", 
       "ORM1",  "IGFBP1", "PTHLH", "GPC3",  "IGFBP3","TOB1",    "MITF",   "NDRG1", 
       "NR1H4", "FGFR3",  "PVR",   "IL6",   "PTPRM", "ERBB2",   "NID2",   "LAMB1", 
       "COMP",  "PLS3",   "MCAM",  "SPP1",  "LAMC1", "COL4A2",  "COL4A1", "MYOC",  
       "ANXA4", "TFPI2",  "CST6",  "SLPI",  "TIMP2", "CPM",     "GGT1",   "NNMT",
       "MAL",   "EEF1A2", "HGD",   "TCN2",  "CDA",   "PCCA",    "CRYM",   "PDXK",  
       "STC1",  "WARS",  "HMOX1", "FXYD2", "RBP4",   "SLC6A12", "KDELR3", "ITM2B")
> eg <- bitr(x, fromType="SYMBOL", toType=c("ENTREZID","ENSEMBL"), OrgDb="org.Hs.eg.db"); head(eg)
'select()' returned 1:many mapping between keys and columns
  SYMBOL ENTREZID         ENSEMBL
1   GPX3     2878 ENSG00000211445
2   GLRX     2745 ENSG00000173221
3    LBP     3929 ENSG00000129988
4  CRYAB     1410 ENSG00000109846
5  DEFB1     1672 ENSG00000164825
6  HCLS1     3059 ENSG00000180353

可以看到,这里转换ID的对应文件来源于"org.Hs.eg.db"这个包。

3、GO、KEGG富集分析

3.1 GO富集分析

在开始富集分析之前先看看GO和KEGG富集分析的方法以及参数:

enrichGO     GO Enrichment Analysis of a gene set. Given a vector of genes, this
             function will return the enrichment GO categories after FDR control.
Usage:
  enrichGO(gene, OrgDb, keyType = "ENTREZID", ont = "MF", pvalueCutoff = 0.05, 
           pAdjustMethod = "BH", universe, qvalueCutoff = 0.2, minGSSize = 10, 
           maxGSSize = 500, readable = FALSE, pool = FALSE)
Arguments:
  gene                 a vector of entrez gene id.
  OrgDb                OrgDb
  keyType              keytype of input gene
  ont                  One of "MF", "BP", and "CC" subontologies or 'ALL'.
  pvalueCutoff         Cutoff value of pvalue.
  pAdjustMethod        one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
  universe             background genes
  qvalueCutoff         qvalue cutoff
  minGSSize            minimal size of genes annotated by Ontology term for testing.
  maxGSSize            maximal size of genes annotated for testing
  readable             whether mapping gene ID to gene Name
  pool                 If ont=’ALL’, whether pool 3 GO sub-ontologies

导入数据,这是一个整合数据,在这里我们要用到的只是entrez ID列和最后一列(logFC):

> library(clusterProfiler)
library(org.Hs.eg.db)

> degenes <- read.csv('D:/TCGA/microarray_analysis/intersectgenes_logFC_broad.txt',header = T,stringsAsFactors = F,sep = '\t')
> head(degenes)
    Symbol GSM450153 GSM450154 GSM450155              ID      P.Value     Q.Value   adj.P.Val RefSeq.ID Entrez.ID Fold.Change
1     AIM1   -0.7155   -0.8391   -2.3808 ENSG00000112297 4.518321e-02 0.287315306 0.287315306        NA       202    2.555354
2      AK5   -1.9269   -0.6967   -0.5628 ENSG00000154027 7.907520e-05 0.005415775 0.005415775        NA     26289    1.350051
3    ANXA3    4.2110    0.8687   -0.1016 ENSG00000138772 3.122002e-02 0.229588586 0.229588586        NA       306   -2.328736
4 ARHGAP15   -0.0725   -1.5821   -2.0469 ENSG00000075884 6.321948e-05 0.004553170 0.004553170        NA     55843    5.064183
5    ASGR2    1.5563    1.4054    1.2066 ENSG00000161944 1.474010e-02 0.146976591 0.146976591        NA       433    2.061535
6      ATM   -1.4344   -0.4961   -1.9324 ENSG00000149311 1.403235e-02 0.142613364 0.142613364        NA       472    2.313447
> genelist <- degenes$Entrez.ID

# 检查是否有重复
> genelist[duplicated(genelist)]
integer(0)

由于clusterProfiler富集分析推荐的输入文件是Entrez ID,因此这里提取的是Entrez ID,接下来就可以进行富集分析了:

> go <- enrichGO(genelist, OrgDb = org.Hs.eg.db, ont='ALL',
                 pAdjustMethod = 'BH',pvalueCutoff = 0.05, 
                 qvalueCutoff = 0.2,keyType = 'ENTREZID')

> head(go)
> dim(go)
[1] 513  10
> dim(go[go$ONTOLOGY=='BP',])
[1] 390  10
> dim(go[go$ONTOLOGY=='CC',])
[1] 76 10
> dim(go[go$ONTOLOGY=='MF',])
[1] 47 10

看来这些差异基因主要还是富集到BP中了

进行简单的可视化

> p1 <- barplot(go,showCategory=20,drop=T)
> p2 <- dotplot(go,showCategory=50)
> p1 + p2

还可以绘制GO的网络关系图,但是值得注意的是这里的数据只能是富集一个GO通路(BP、CC或MF)的数据

> library('topGO')
> go.BP <- enrichGO(genelist, OrgDb = org.Hs.eg.db, ont='BP',
     pAdjustMethod = 'BH',pvalueCutoff = 0.05, qvalueCutoff = 0.2,
     keyType = 'ENTREZID')
> p3 <-plotGOgraph(go.BP)

3.2 KEGG通路富集

KEGG通路富集函数用法与GO富集分析方法类似:

enrichKEGG       KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return 
                 the enrichment KEGG categories with FDR control.
Usage:
  enrichKEGG(gene, organism = "hsa", keyType = "kegg", pvalueCutoff = 0.05,
             pAdjustMethod = "BH", universe, minGSSize = 10, maxGSSize = 500,
             qvalueCutoff = 0.2, use_internal_data = FALSE)

Arguments:
  gene                     a vector of entrez gene id.
  organism                 supported organism listed in ’http://www.genome.jp/kegg/catalog/org_list.html’
  keyType                  one of "kegg", ’ncbi-geneid’, ’ncib-proteinid’ and ’uniprot’
  pvalueCutoff             Cutoff value of pvalue.
  pAdjustMethod            one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
  universe                 background genes
  minGSSize                minimal size of genes annotated by Ontology term for testing.
  maxGSSize                maximal size of genes annotated for testing
  qvalueCutoff             qvalue cutoff
  use_internal_data        logical, use KEGG.db or latest online KEGG data

我们继续使用上面的数据进行KEGG富集分析:

> kegg <- enrichKEGG(genelist, organism = 'hsa', keyType = 'kegg', 
             pvalueCutoff = 0.05,pAdjustMethod = 'BH', qvalueCutoff = 0.2,
             minGSSize = 10,maxGSSize = 500,use_internal_data = FALSE)
> head(kegg)
               ID                                  Description GeneRatio  BgRatio       pvalue     p.adjust       qvalue
hsa04658 hsa04658             Th1 and Th2 cell differentiation     11/76  92/7404 1.750537e-09 2.765849e-07 2.026938e-07
hsa05310 hsa05310                                       Asthma      7/76  31/7404 1.956862e-08 1.433518e-06 1.050546e-06
hsa04672 hsa04672 Intestinal immune network for IgA production      8/76  49/7404 2.721869e-08 1.433518e-06 1.050546e-06
hsa05168 hsa05168                     Herpes simplex infection     13/76 185/7404 3.744992e-08 1.479272e-06 1.084077e-06
hsa05140 hsa05140                                Leishmaniasis      9/76  74/7404 5.040165e-08 1.592692e-06 1.167196e-06
hsa05330 hsa05330                          Allograft rejection      7/76  38/7404 8.868232e-08 2.335301e-06 1.711413e-06
                                                                    geneID Count
hsa04658              915/916/2353/3113/3117/3119/3122/3458/3565/3932/6775    11
hsa05310                                 959/2205/3113/3117/3119/3122/3565     7
hsa04672                             959/7852/3113/3117/3119/3122/3565/608     8
hsa05168 6352/972/54205/1936/2353/3113/3117/3119/3122/64135/3434/3458/5187    13
hsa05140                      2209/2212/2353/3113/3117/3119/3122/3458/3565     9
hsa05330                                 959/3113/3117/3119/3122/3458/3565     7
> dim(kegg)
[1] 30  9

# 简单可视化
> dotplot(kegg, showCategory=30)

image

4、GSEA富集分析

clusterProfiler provides enricher function for hypergeometric test and GSEA function for gene set enrichment analysis that are designed to accept user defined annotation.

这里使用clusterProfiler里面的GSEA函数进行GSEA富集分析,并与使用超几何分布富集(enricher函数)的结果进行简单比较,enricher函数与GSEA函数用法基本相同,因此这里只给出GSEA的用法及参数。

GSEA      a universal gene set enrichment analysis tools
Usage:
  GSEA(geneList, exponent = 1, nPerm = 1000, minGSSize = 10,
       maxGSSize = 500, pvalueCutoff = 0.05, pAdjustMethod = "BH", TERM2GENE,
       TERM2NAME = NA, verbose = TRUE, seed = FALSE, by = "fgsea")

Arguments:
geneList           order ranked geneList
exponent           weight of each step
nPerm              number of permutations
minGSSize          minimal size of each geneSet for analyzing
maxGSSize          maximal size of genes annotated for testing
pvalueCutoff       pvalue cutoff
pAdjustMethod      p value adjustment method
TERM2GENE          user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene
TERM2NAME          user input of TERM TO NAME mapping, a data.frame of 2 column with term and name
verbose            logical
seed               logical
by                 one of ’fgsea’ or ’DOSE’

在进行富集分析之前需要对数据做一个预处理——排序。

> library(dplyr)
> geneList <- select(degenes, Entrez.ID, Fold.Change); head(geneList)
  Entrez.ID Fold.Change
1       202    2.555354
2     26289    1.350051
3       306   -2.328736
4     55843    5.064183
5       433    2.061535
6       472    2.313447
> geneList.sort <- arrange(geneList, desc(Fold.Change)); head(geneList.sort)
  Entrez.ID Fold.Change
1      3512    36.47332
2      3117    35.58685
3      3113    24.10151
4       916    14.89763
5      5996    14.67417
6      3119    11.12233
> gene <- geneList.sort$Entrez.ID

这里使用的是broad GSEA提供的gene sets 来提供TERM2GENE:

> gmtfile <- system.file("extdata", "c5.cc.v5.0.entrez.gmt", package="clusterProfiler")
> c5 <- read.gmt(gmtfile)
> head(c5)
          ont  gene
1 NUCLEOPLASM  3190
2 NUCLEOPLASM  2547
3 NUCLEOPLASM 26173
4 NUCLEOPLASM  9439
5 NUCLEOPLASM 57508
6 NUCLEOPLASM  6837

万事俱备,只欠东风。现在可以开始分析了,先进行超几何分布的富集分析:

### 先使用基于超几何分布的富集分析
> enrich <- enricher(gene, TERM2GENE=c5); head(enrich)
                                                                                       ID                                  Description GeneRatio BgRatio     pvalue  p.adjust
IMMUNOLOGICAL_SYNAPSE                                               IMMUNOLOGICAL_SYNAPSE                        IMMUNOLOGICAL_SYNAPSE      2/55 11/5270 0.00553797 0.2547466
LYSOSOME                                                                         LYSOSOME                                     LYSOSOME      3/55 61/5270 0.02528071 0.3336995
LYTIC_VACUOLE                                                               LYTIC_VACUOLE                                LYTIC_VACUOLE      3/55 61/5270 0.02528071 0.3336995
VACUOLE                                                                           VACUOLE                                      VACUOLE      3/55 69/5270 0.03472762 0.3336995
LIPID_RAFT                                                                     LIPID_RAFT                                   LIPID_RAFT      2/55 29/5270 0.03627169 0.3336995
PROTEIN_SERINE_THREONINE_PHOSPHATASE_COMPLEX PROTEIN_SERINE_THREONINE_PHOSPHATASE_COMPLEX PROTEIN_SERINE_THREONINE_PHOSPHATASE_COMPLEX      1/55 10/5270 0.09967809 0.7338789
                                                qvalue         geneID Count
IMMUNOLOGICAL_SYNAPSE                        0.2390071    50852/84433     2
LYSOSOME                                     0.3130819 3122/9098/8692     3
LYTIC_VACUOLE                                0.3130819 3122/9098/8692     3
VACUOLE                                      0.3130819 3122/9098/8692     3
LIPID_RAFT                                   0.3130819     3932/84433     2
PROTEIN_SERINE_THREONINE_PHOSPHATASE_COMPLEX 0.6885363          54205     1

再做GSEA富集分析,在此之前需要对输入gene list做一下处理,包括三步:

## assume 1st column is ID
## 2nd column is FC
> head(geneList)
  Entrez.ID Fold.Change
1       202    2.555354
2     26289    1.350051
3       306   -2.328736
4     55843    5.064183
5       433    2.061535
6       472    2.313447

## feature 1: numeric vector
> glist <- geneList[,2];head(glist)
[1]  2.555354  1.350051 -2.328736  5.064183  2.061535  2.313447

## feature 2: named vector
> names(glist) <- as.character(geneList[,1]);head(glist)
      202     26289       306     55843       433       472 
 2.555354  1.350051 -2.328736  5.064183  2.061535  2.313447 

## feature 3: decreasing order
> glist <- sort(glist,decreasing = T); head(glist)
    3512     3117     3113      916     5996     3119 
36.47332 35.58685 24.10151 14.89763 14.67417 11.12233

输入文件准备好了尽可以进行GSEA富集分析了:

> gsea <- GSEA(glist, TERM2GENE=c5, verbose=FALSE, pvalueCutoff = 0.8); head(gsea)
                                       ID          Description setSize enrichmentScore        NES    pvalue  p.adjust   qvalues rank                   leading_edge
MEMBRANE                         MEMBRANE             MEMBRANE      30       0.4525068  1.2643778 0.1896024 0.6880521 0.6880521   29 tags=37%, list=23%, signal=37%
PLASMA_MEMBRANE           PLASMA_MEMBRANE      PLASMA_MEMBRANE      28       0.4358283  1.2085736 0.2435766 0.6880521 0.6880521   29 tags=36%, list=23%, signal=35%
CYTOPLASMIC_PART         CYTOPLASMIC_PART     CYTOPLASMIC_PART      12      -0.2809599 -1.1642120 0.2481203 0.6880521 0.6880521   34 tags=67%, list=27%, signal=54%
MEMBRANE_PART               MEMBRANE_PART        MEMBRANE_PART      27       0.3603900  0.9960600 0.4928131 0.6880521 0.6880521   68 tags=70%, list=53%, signal=42%
PLASMA_MEMBRANE_PART PLASMA_MEMBRANE_PART PLASMA_MEMBRANE_PART      24       0.3593591  0.9832720 0.5092593 0.6880521 0.6880521   68 tags=71%, list=53%, signal=41%
INTEGRAL_TO_MEMBRANE INTEGRAL_TO_MEMBRANE INTEGRAL_TO_MEMBRANE      22       0.3618337  0.9738809 0.5191710 0.6880521 0.6880521   68 tags=73%, list=53%, signal=41%
                                                                                                        core_enrichment
MEMBRANE                                                          916/5996/3122/7852/972/969/6402/2205/56253/10225/3738
PLASMA_MEMBRANE                                                       916/5996/3122/7852/969/6402/2205/56253/10225/3738
CYTOPLASMIC_PART                                                                    8692/54205/1936/2879/9531/293/23787
MEMBRANE_PART        916/7852/972/969/6402/2205/10225/3738/3932/30061/9308/608/51266/50852/51348/29121/1235/84433/22914
PLASMA_MEMBRANE_PART         916/7852/969/6402/2205/10225/3738/3932/30061/9308/51266/50852/51348/29121/1235/84433/22914
INTEGRAL_TO_MEMBRANE                7852/972/969/6402/2205/10225/3738/30061/9308/608/51266/50852/51348/29121/1235/22914

不要问我为什么要pvalueCutoff设置0.8,因为一直调大到0.8才富集到结果。。。可见数据应该是有问题的,但这里作为一个实践就不管那么多了。
而且,clusterProfiler还支持GSEA的GO、KEGG富集。

A common approach in analyzing gene expression profiles was identifying differential expressed genes that are deemed interesting. The enrichment analysis we demonstrated previous were based on these differential expressed genes. This approach will find genes where the difference is large, but it will not detect a situation where the difference is small, but evidenced in coordinated way in a set of related genes. Gene Set Enrichment Analysis (GSEA)(Subramanian et al. 2005) directly addresses this limitation. All genes can be used in GSEA; GSEA aggregates the per gene statistics across genes within a gene set, therefore making it possible to detect situations where all genes in a predefined set change in a small but coordinated way. Since it is likely that many relevant phenotypic differences are manifested by small but consistent changes in a set of genes.

> gsea.go <- gseGO(glist,OrgDb = org.Hs.eg.db, pvalueCutoff = 0.5); head(gsea.go)
preparing geneSet collections...
GSEA analysis...
leading edge analysis...
done...
                   ID                                 Description setSize enrichmentScore      NES      pvalue  p.adjust    qvalues rank                   leading_edge
GO:0031294 GO:0031294                    lymphocyte costimulation      11       0.7832645 1.872828 0.001186240 0.1049915 0.09363642   10  tags=45%, list=8%, signal=46%
GO:0031295 GO:0031295                        T cell costimulation      11       0.7832645 1.872828 0.001186240 0.1049915 0.09363642   10  tags=45%, list=8%, signal=46%
GO:0002376 GO:0002376                       immune system process      74       0.6032615 1.738943 0.002004008 0.1049915 0.09363642   60 tags=64%, list=47%, signal=80%
GO:0042110 GO:0042110                           T cell activation      23       0.6722496 1.825647 0.002143623 0.1049915 0.09363642   24 tags=48%, list=19%, signal=47%
GO:0050851 GO:0050851 antigen receptor-mediated signaling pathway      11       0.7582504 1.813018 0.002372479 0.1049915 0.09363642   10  tags=45%, list=8%, signal=46%
GO:0050852 GO:0050852           T cell receptor signaling pathway      10       0.7963700 1.872212 0.002380952 0.1049915 0.09363642   10  tags=50%, list=8%, signal=50%
                                                                                                                                                                                                                                                core_enrichment
GO:0031294                                                                                                                                                                                                                              3117/3113/916/3119/3122
GO:0031295                                                                                                                                                                                                                              3117/3113/916/3119/3122
GO:0002376 3512/3117/3113/916/5996/3119/914/10964/3122/7852/972/4068/6402/6352/84636/915/2205/51176/4069/2213/56253/10225/55619/4332/2212/6375/7100/3434/8638/3932/2209/51316/30061/9308/64135/8320/10578/3458/10875/608/83666/51266/50852/3437/51348/2353/9111
GO:0042110                                                                                                                                                                                                  3117/3113/916/3119/914/3122/972/6352/915/51176/2213
GO:0050851                                                                                                                                                                                                                              3117/3113/916/3119/3122
GO:0050852                                                                                                                                                                                                                              3117/3113/916/3119/3122

顺便再利用上面处理好的glist进行一下KEGG富集到的某一条通路的可视化:

> library(pathview)
> pathview(gene.data = glist, pathway.id = 'hsa04658',species="hsa", limit=list(gene=max(abs(glist)), cpd=1))

上面的命令会在当前目录生成3个文件:一个原始KEGG通路图片,一个标注了上下调基因的,最后一个文本文件则是一些KEGG通路信息。

image image

参考:
clusProfiler命令参考手册
GSEA的分析汇总
Statistical analysis and visualization of functional profiles for genes and gene clusters
GSEA分析是个什么鬼?(上)
GSEA是个什么鬼?(下)
https://www.jianshu.com/p/feaefcbdf986
https://blog.csdn.net/weixin_43569478/article/details/83744242
https://www.sohu.com/a/400989995_120736615
https://www.jianshu.com/p/e8e04f34fd7c
https://www.jianshu.com/p/48ac98098760
https://blog.csdn.net/weixin_39574928/article/details/112245821
https://www.jianshu.com/p/3f11b838f9d3
https://www.jianshu.com/p/e133ab3169fa

上一篇 下一篇

猜你喜欢

热点阅读