2019-01-03[Stay Sharp]Gaussian D
2019-01-03 本文已影响2人
三千雨点
The Gaussian Distribution
The Gaussian Distribution (Normal distribution). For a single variable x, the Gaussian distribution's equation is
The corresponding of The Gaussian Distribution is

which is generated by the code
import matplotlib.pyplot as plt, matplotlib.mlab as mlab
import numpy as np
import math
mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
plt.plot(x, mlab.normpdf(x, mu, sigma))
plt.show()
The Central Limit Theorem
WikiPedia says, the central limit theorem (CLT) establishes that, in some situations, when independent random variables are added, their properly normalized sum tends to a Gaussian Distribution, even if the original variables themselves are not normally distributed.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from wand.image import Image
from wand.display import display
n = 1000
avg = []
for i in range(1, n):
a = np.random.randint(1, 7, 10)
avg.append(np.average(a))
def clt(current):
plt.cla()
if current == 1000:
a.event_source.stop()
plt.hist(avg[0:current])
plt.gca().set_title('Expected value of die rolls')
plt.gca().set_xlabel('Average from die roll')
plt.gca().set_ylabel('Frequency')
plt.annotate('Die roll = {}'.format(current), [3, 27])
fig = plt.figure()
a = animation.FuncAnimation(fig, clt, interval=1)
References
https://medium.freecodecamp.org/how-to-visualize-the-central-limit-theorem-in-python-b619f5b00168