统计学习方法之kNN算法

2018-09-02  本文已影响0人  程序员Morgan

k 近邻是什么

k 近邻法是机器学习中最基本的分类和回归方法,也称为kNN算法。通常k近邻法用于分类问题。
k近邻法假定给定一个训练数据集,其中实例类别已定。分类时,对新的实例,根据其K个最近邻的训练实例类别,一般通过多数表决的方式来进行预测。

例如,有两堆水果,一堆是橙子,一堆是柚子,新拿到一个水果,判断是橙子还是柚子。一般来说,柚子更大更红。那么判断和该水果最相近的 3 个水果是什么,比如 3 个最近的邻居是柚子,那么我们可以判断新拿到的水果是柚子,这就是 kNN 算法。

k近邻算法

k近邻算法简单,直观有效。
输入:给定一个训练数据集T={(x1, y1), (x2, y2), ..., (xn, yn)}, 其中xi为实例的特征向量,yi为实例的类别。
输出:实例x所属的类y。

  1. 根据给定的距离度量, 在训练集T中寻找与x最近邻的k个点,涵盖这k个点的x的邻域记作Nk(x)
  2. 在Nk(x)中根据分类决策规则(如多数表决)决定x的类别y:


    其中I为指示函数,当yi = cj时I为1,否则I为0

特别的,当k=1时,称为最近邻算法。注意,k近邻法没有显示的学习过程。

K近邻模型

k近邻模型对应于特征空间的划分。模型由3个基本要素构成:

训练集距离度量k值以及分类决策规则确定后,对于新输入的任何一个实例,它所属的类别唯一的确定。

距离度量

特征空间中的两个实例点是两个实例点相似程度的反映.k近邻模型的特征空间一般是n维的实数向量空间。



当p=2时,则是欧式距离。即:


当p=1时,则为曼哈顿距离


当p=∞时,则是各个坐标距离的最大值。


k值选择

k值的选择会对k近邻的结果产生重大影响。
如果选择较小的k值,则学习的近似误差减小,估计误差增大,预测结果会对近邻的实例点非常敏感。如果近邻点的实例点是噪声点,则预测会出错。因此,较小的k值意味着整体模型会变得复杂,容易过拟合。
如果选择较大的k值,则学习的近似误差增大,估计误差减小。预测结果也会受到与输入实例较远的实例点的影响,造成预测错误。因此,较大的k值意味着整体模型变得简单,容易欠拟合。

在应用中,一般k值选用一个比较小的数值,通常采用交叉验证法来选取最优值。

分类决策规则

k近邻法中的分类决策规则往往是多数表决,即由输入实例的 k 个邻近的训练实例的多数类决定输入实例的类别。

多数表决规则解释如下: 如果分类损失函数为 0-1 损失函数,分类函数为:


那么误分类的概率是:


对给定的实例 x 属于特征向量集,最近邻的 k 个训练实例点构成集合 Nk(x). 如何涵盖 Nk(x)的区域的类别是 cj,那么误分类是:


要使误分类率最小即经验风险最小, 就要使 ∑I(yi=cj)最大,所以多数表决规则等价于经验风险最小化

kd树

kd树是一种对k维空间中实例点进行存储以便对其进行快速检索的树形数据结构。kd树是二叉树,表示对k维空间的一个划分。构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间切分,构成一系列的k维超矩形区域。kd树的每个结点对应于一个k维超矩形区域。

搜索 kd 树

kd 树的最近邻搜索算法:
输入:已构造 kd 树;目标点 x
输出: x 的最近邻
1.在 kd 树种找到含目标点 x 的叶结点: 从根节点处罚,递归地向下访问 kd 树。若目标点 x 当前维的坐标小于切分店的坐标,移动到左子结点,否则移动到右子节点,直到子节点为叶节点为止。
2.以此叶结点为"当前最近点"
3.递归地向上回退,在每个节点如下操作:

一般,实例点是随机分布的,kd 树搜索的平均计算复杂度是 O(logN). kd 树更适应于训练实例数远大于空间维数时的 k 近邻搜索。

总结

下一篇文章会用 kNN 分类器来实现一个推荐系统引擎系统,敬请期待。

上一篇下一篇

猜你喜欢

热点阅读