算法初探

3位十年编程大师,亲授十六种编程算法绝学,助你走上成神之路

2018-01-03  本文已影响334人  JAVA架构师的圈子

有人说:“今天计算机这么快,算法还重要吗?”

以下是在编程算法中排名靠前的16种的算法相关的概念,我会通过一些简单的例子来阐述这些概念。要完全掌握这些概念,需要各位更多的努力

绝学一:最大期望(EM)算法

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

绝学二:A*搜寻算法

俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。

绝学三:快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:

1 从数列中挑出一个元素,称为 “基准”(pivot)。

2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

绝学四:堆排序算法堆排序

是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:传智播客博学谷--it培训在线学习平台--即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:

1. 创建一个堆H[0..n-1]

2. 把堆首(最大值)和堆尾互换

3. 把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置

4. 重复步骤2,直到堆的尺寸为1

温馨提示:关于详细的编程视频教程,加群:671017482找管理自己免费领取

绝学五:归并排序

归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置

3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

4. 重复步骤3直到某一指针达到序列尾

5. 将另一序列剩下的所有元素直接复制到合并序列尾

绝学六:哈希函数

HashFunction是一种从任何一种数据中创建小的数字“指纹”的方法。该函数将数据打乱混合,重新创建一个叫做散列值的指纹。散列值通常用来代表一个短的随机字母和数字组成的字符串。好的散列函数在输入域中很少出现散列冲突。在散列表和数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。

绝学七:二分查找算法

二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始:

如果中间元素正好是要查找的元素,则搜素过程结束;

如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

如果在某一步骤数组为空,则代表找不到。

这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。

绝学八:BFPRT(线性查找算法)

BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。

该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂度,五位算法作者做了精妙的处理。

算法步骤:

1. 将n个元素每5个一组,分成n/5(上界)组。

2. 取出每一组的中位数,任意排序方法,比如插入排序。

3. 递归的调用selection算法查找上一步中所有中位数的中位数,设为x,偶数个中位数的情况下设定为选取中间小的一个。

4. 用x来分割数组,设小于等于x的个数为k,大于x的个数即为n-k。

5. 若i==k,返回x;若ik,在大于x的元素中递归查找第i-k小的元素。

终止条件:n=1时,返回的即是i小元素。

绝学九:快速傅里叶变换(FFT)

快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。本条目只描述各种快速算法,对于离散傅里叶变换的性质和应用,请参见离散傅里叶变换。

绝学十:DFS(深度优先搜索)

深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分支。

当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。

如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。

深度优先遍历图算法步骤:

1. 访问顶点v;

2. 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;

3. 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。

上述描述可能比较抽象,举个实例:

DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。

接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

算法十一:BFS(广度优先搜索)

广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。

BFS同样属于盲目搜索。一般用队列数据结构来辅助实现BFS算法。

算法步骤:

1. 首先将根节点放入队列中。

2. 从队列中取出第一个节点,并检验它是否为目标。如果找到目标,则结束搜寻并回传结果。否则将它所有尚未检验过的直接子节点加入队列中。

3. 若队列为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。

4. 重复步骤2。

温馨提示:关于详细的编程视频教程,加群:671017482找管理自己免费领取

绝学十二:Dijkstra算法

戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。

因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想像成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。

这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。

算法步骤:

1. 初始时令 S={V0},T={其余顶点},T中顶点对应的距离值。若存在,d(V0,Vi)为弧上的权值;若不存在,d(V0,Vi)为∞

2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S

关注微信:传智播客博学谷,可以领取各学科最新视频资料

3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

绝学十三:RSA加密演算法

这是一个公钥加密算法,也是世界上第一个适合用来做签名的算法。今天的RSA已经专利失效,其被广泛地用于电子商务加密,大家都相信,只要密钥足够长,这个算法就会是安全的。

绝学十四:动态规划算法

动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。

通常许多 子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量: 一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个 子问题解之时直接查表。

这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

关于动态规划最经典的问题当属背包问题。

算法步骤:

1.最优子结构性质。

如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。

最优子结构性质为动态规划算法解决问题提供了重要线索。

2. 子问题重叠性质。

子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。

动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。

绝学十五:朴素贝叶斯分类算法

朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下, 如何完成推理和决策任务。

概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。

朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。

在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。

绝学十六:Diffie–Hellman密钥协商

Diffie–Hellman key exchange,简称“D–H”,是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。

有人也许会说:“今天计算机这么快,算法还重要吗?”

其实永远不会有太快的计算机,因为我们总会想出新的应用。虽然在摩尔定律的作用下,计算机的计算能力每年都在飞快增长,价格也在不断下降。可我们不要忘记,需要处理的信息量更是呈指数级的增长。

现在每人每天都会创造出大量数据(照片,视频,语音,文本等等)。

日益先进的纪录和存储手段使我们每个人的信息量都在爆炸式的增长。

互联网的信息流量和日志容量也在飞快增长。

在科学研究方面,随着研究手段的进步,数据量更是达到了前所未有的程度。

无论是三维图形、海量数据处理、机器学习、语音识别,都需要极大的计算量。

在网络时代,越来越多的挑战需要靠卓越的算法来解决。

上一篇下一篇

猜你喜欢

热点阅读