Latex编辑

2019-10-22  本文已影响0人  黑白格_0ca6

常用命令汇总

最好是打印出来看,所以直接上链接: https://pan.baidu.com/s/1487ZWoWLG106vl2SL7jIJw&shfl=shareset 提取码: qyhb

大矩阵/大括号

$$\left( \begin{array}{cc} 
2\tau & 7\phi-\frac5{12} \\ 
3\psi & \frac{\pi}8 \end{array} \right) 
\mbox{and}
\left[ \begin{array}{cc|r} 
3 & 4 & 5 \\ 
6 & 7 & 8 \\
9 & 10 & 11 \end{array} \right]$$

\left( \begin{array}{cc} 2\tau & 7\phi-\frac5{12} \\ 3\psi & \frac{\pi}8 \end{array} \right) \mbox{and} \left[ \begin{array}{cc|r} 3 & 4 & 5 \\ 6 & 7 & 8 \\ 9 & 10 & 11 \end{array} \right]

多个公式

$$
f(z)=\left\{ \begin{array}{rcl} 
\cos z & \mbox{for} & z<3 \\ 
0 & \mbox{for} & 3\leq z\leq 5 \\ 
5 & \mbox{for} & z>5 
\end{array} \right.
$$

f(z)=\left\{ \begin{array}{rcl} \cos z & \mbox{for} & z<3 \\ 0 & \mbox{for} & 3\leq z\leq 5 \\ 5 & \mbox{for} & z>5 \end{array} \right.

$$ f(x)=\left\{
\begin{aligned}
x & = & \cos(t) \\
y & = & \sin(t) \\
z & = & \frac xy
\end{aligned}
\right.$$

f(x)=\left\{ \begin{aligned} x & = & \cos(t) \\ y & = & \sin(t) \\ z & = & \frac xy \end{aligned} \right.

$$ F^{HLLC}=\left\{
\begin{array}{rcl}
F_L       &      & {0      <      S_L}\\
F^*_L     &      & {S_L \leq 0 < S_M}\\
F^*_R     &      & {S_M \leq 0 < S_R}\\
F_R       &      & {S_R \leq 0}
\end{array} \right. $$

F^{HLLC}=\left\{ \begin{array}{rcl} F_L & & {0 < S_L}\\ F^*_L & & {S_L \leq 0 < S_M}\\ F^*_R & & {S_M \leq 0 < S_R}\\ F_R & & {S_R \leq 0} \end{array} \right.

$$f(x)=
\begin{cases}
0& \text{x=0}\\
1& \text{x!=0}
\end{cases}$$

f(x)= \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases}

多行公式等号对齐

$$
\begin{aligned}
(F-\mu_F)(F-\mu_F)^{T}
&=\left[ \begin{array}{cccc} \lambda_1 &  &  &  \\
 & \lambda_2 & & \\
 & & ... &\\
 & & & \lambda_4
\end{array} \right] \\
&=U^{T}(X-\mu_X)(X-\mu_X)^{T}U \\
&=U^{T}\Sigma_XU
\end{aligned}
$$

\begin{align} (F-\mu_F)(F-\mu_F)^{T} &=\left[ \begin{array}{cccc} \lambda_1 & & & \\ & \lambda_2 & & \\ & & ... &\\ & & & \lambda_4 \end{array} \right] \\ &=U^{T}(X-\mu_X)(X-\mu_X)^{T}U \\ &=U^{T}\Sigma_XU \end{align}

公式编号

$$
\begin{align}
(F-\mu_F)(F-\mu_F)^{T}
&=\left[ \begin{array}{cccc} \lambda_1 &  &  &  \\
& \lambda_2 & & \\
& & ... &\\
& & & \lambda_4
\end{array} \right]\tag{1} \\
&=U^{T}(X-\mu_X)(X-\mu_X)^{T}U\tag{2} \\
&=U^{T}\Sigma_XU\tag{3}
\end{align}
$$

\begin{align} (F-\mu_F)(F-\mu_F)^{T} &=\left[ \begin{array}{cccc} \lambda_1 & & & \\ & \lambda_2 & & \\ & & ... &\\ & & & \lambda_4 \end{array} \right]\tag{1} \\ &=U^{T}(X-\mu_X)(X-\mu_X)^{T}U\tag{2} \\ &=U^{T}\Sigma_XU\tag{3} \end{align}

$$
\begin{align}
(F-\mu_F)(F-\mu_F)^{T}
&=\left[ \begin{array}{cccc} \lambda_1 &  &  &  \\
& \lambda_2 & & \\
& & ... &\\
& & & \lambda_4
\end{array} \right] \\
&=U^{T}(X-\mu_X)(X-\mu_X)^{T}U \\
&=U^{T}\Sigma_XU
\end{align}\tag{4}
$$

\begin{align} (F-\mu_F)(F-\mu_F)^{T} &=\left[ \begin{array}{cccc} \lambda_1 & & & \\ & \lambda_2 & & \\ & & ... &\\ & & & \lambda_4 \end{array} \right] \\ &=U^{T}(X-\mu_X)(X-\mu_X)^{T}U \\ &=U^{T}\Sigma_XU \end{align}\tag{4}

参考文献

  1. 在CSDN-Markdown中书写多行大括号公式
  2. [CSDN_Markdown] 数学公式对齐
上一篇 下一篇

猜你喜欢

热点阅读