912. Sort an Array
2020-08-25 本文已影响0人
jluemmmm
排序方法 | 平均时间复杂度 | 最坏 | 最好 | 空间复杂度 | 稳定性 |
---|---|---|---|---|---|
直接插入排序 | 稳定 | ||||
直接选择排序 | 不稳定 | ||||
冒泡排序 | 稳定 | ||||
希尔排序 | 不稳定 | ||||
快速排序 | 不稳定 | ||||
归并排序 | 稳定 | ||||
堆排序 | 不稳定 |
希尔排序
插入排序的一种,又称缩小增量排序,按下标增量进行分组,对每组使用直接插入算法排序,随着增量逐渐减少,每组包含的关键字越来越多,减至1时,整个文件被分为1组算法终止
- Runtime: 6396 ms, faster than 5.03%
- Memory Usage: 40.1 MB, less than 98.23%
var sortArray = function(nums) {
let len = nums.length
let step = Math.floor(len / 2)
while(step > 0) {
let sublen = Math.floor(len / step)
for(let i = 0; i < sublen; i++) {
for(let j = i + step; j < len; j = j+step) {
if(nums[i] > nums[j]) [nums[j], nums[i]] = [nums[i], nums[j]]
}
}
step = Math.floor(step / 2)
}
return nums
};
归并排序
采用分治策略,将问题分解成一些小的问题递归求解,治阶段将分阶段得到的各答案组合在一起
- Runtime: 244 ms, faster than 30.33%
- Memory Usage: 49.9 MB, less than 21.87%
var sortArray = function(nums) {
let len = nums.length
if (len < 2) return nums
let mid = Math.floor(len / 2)
return merge(sortArray(nums.slice(0, mid)), sortArray(nums.slice(mid)))
};
let merge = function(left, right) {
let res = []
while(left.length && right.length) {
if (left[0] > right[0]) {
res.push(right.shift())
} else {
res.push(left.shift())
}
}
return res.concat(left, right)
}
直接选择排序
在所有记录中选择关键字最小的进行记录,于第一个记录进行位置交换,在其余的记录中选择关键值次小的记录与第二个记录进行交换
- Runtime: 1104 ms, faster than 17.96%
- Memory Usage: 42.2 MB, less than 58.98%
var sortArray = function(nums) {
let len = nums.length
for(let i = 0; i < len; i++) {
let min = i
for(let j = i + 1; j < len; j++) {
if(nums[j] < nums[min]) min = j
}
[nums[min], nums[i]] = [nums[i], nums[min]]
}
return nums
};
堆排序
堆可以看作是一棵树的数组对象,满足
- 堆中的某个节点总是不大于或不小于其父节点的值
- 堆总是一颗完全二叉树
根节点是所有节点中关键字最大的,称为大根堆,一般升序排序使用大根堆,降序排序使用小根堆。是因为,升序排序是采用大根堆把最大的元素交换至根节点,然后沉到底部。
- Runtime: 164 ms, faster than 40.30%
- Memory Usage: 41.7 MB, less than 77.40%
/**
* @param {number[]} nums
* @return {number[]}
*/
var sortArray = function(nums) {
let len = nums.length
if (len < 2) return nums
let mid = Math.floor(len / 2 - 1)
//从第一个非叶子节点开始进行推排序
for(let i = mid; i >= 0; i--) {
heap_sort(nums, i, len)
}
//排序一轮之后进行交换,对剩下的部分进行堆排序
for(let j = len - 1; j >= 0; j--) {
[nums[j], nums[0]] = [nums[0], nums[j]]
heap_sort(nums, 0, j)
}
return nums
};
var heap_sort = function(nums, index, boundary) {
let max = index
let left = index * 2 + 1
let right = index * 2 + 2
if(left < boundary && nums[left] > nums[max]) max = left
if(right < boundary && nums[right] > nums[max]) max = right
if(max > index) {
[nums[index], nums[max]] = [nums[max], nums[index]]
heap_sort(nums, max, boundary)
}
}
快速排序
- Runtime: 192 ms, faster than 33.80%
- Memory Usage: 57.5 MB, less than 5.07%
var sortArray = function(nums) {
if(nums.length < 2) return nums
let pilot = nums.pop()
let less = sortArray(nums.filter(item => item < pilot))
let more = sortArray(nums.filter(item => item >= pilot))
return less.concat([pilot], more)
};
冒泡排序
- Runtime: 6284 ms, faster than 5.08%
- Memory Usage: 41.2 MB, less than 90.58%
var sortArray = function(nums) {
let len = nums.length
for(let i = 0; i < len; i++) {
for(j = 0; j < len - i - 1; j++) {
if(nums[j] > nums[j + 1]) [nums[j], nums[j + 1]] = [nums[j + 1], nums[j]]
}
}
return nums
};
直接插入排序
对第一次循环的i+1开始进行倒循环
- Runtime: 7352 ms, faster than 5.08%
- Memory Usage: 41 MB, less than 93.59%
var sortArray = function(nums) {
let len = nums.length
for(let i = 0; i < len; i++) {
for(let j = i + 1; j > 0; j--) {
if(nums[j] < nums[j - 1]) [nums[j - 1], nums[j]] = [nums[j], nums[j - 1]]
}
}
return nums
};
sort排序
- Runtime: 172 ms, faster than 37.66%
- Memory Usage: 42.4 MB, less than 55.36%
/**
* @param {number[]} nums
* @return {number[]}
*/
var sortArray = function(nums) {
nums.sort(function(a,b){
if(a < b) return -1
else return 1
})
return nums
};
原址交换的快排
- Runtime: 116 ms, faster than 67.96%
- Memory Usage: 43.3 MB, less than 90.66%
/**
* @param {number[]} nums
* @return {number[]}
*/
var sortArray = function(nums) {
quickSort(nums, 0, nums.length - 1)
return nums
};
var quickSort = function(nums, i, j) {
if(j - i < 1) return nums
let flag = nums[i]
let start = i + 1
let end = j
while(start <= end) {
if(nums[start] <= flag) {
start++
} else {
swap(nums, start, end)
end--
}
}
swap(nums, i, start - 1)
if (start - 1 <= j)quickSort(nums, i, start - 2)
quickSort(nums, start, j)
}
var swap = function(nums, m, n) {
let temp = nums[m]
nums[m] = nums[n]
nums[n] = temp
}