几个卷积神经网络Backbone网络结构

2021-06-10  本文已影响0人  zeolite

做个笔记
VGG16

import torch
from torch import nn
import numpy as np


class VGG16(nn.Module):
    def __init__(self):
        super(VGG16, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(64, 128, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(128, 256, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(256, 512, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(512, 512, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2)
        )
        self.avgpool = nn.AdaptiveAvgPool2d(output_size=(7, 7))
        self.classifier = nn.Sequential(
            nn.Linear(25088, 4096, bias=True),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(4096, 4096, bias=True),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(4096, 1000, bias=True)
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x


if __name__ == '__main__':
    image = np.random.randn(1, 3, 224, 224)
    image = torch.tensor(image, dtype=torch.float32)

    model = VGG16()
    print(model)
    output = model(image)
    print(output.shape)

这么堆叠写是因为我想看结构呀,所以没有抽出公共代码。
AlexNet

import torch
from torch import nn
import numpy as np


class AlexNet(nn.Module):

    def __init__(self):
        super().__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, 11, 4, 2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(3, 2),
            nn.Conv2d(64, 192, 5, 1, 2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(3, 2),
            nn.Conv2d(192, 384, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, 3, 1, 1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(3, 2)
        )
        self.avgpool = nn.AdaptiveAvgPool2d(output_size=(6, 6))
        self.classifier = nn.Sequential(
            nn.Dropout(0.5),
            nn.Linear(9216, 4096, bias=True),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(4096, 4096, bias=True),
            nn.ReLU(inplace=True),
            nn.Linear(4096, 1000, bias=True)
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x


if __name__ == '__main__':
    image = np.random.randn(1, 3, 224, 224)
    image = torch.tensor(image, dtype=torch.float32)
    model = AlexNet()
    output = model(image)
    print(output.shape)

ResNet18

import torch
from torch import nn
import numpy as np


class BasicBlock(nn.Module):
    def __init__(self, in_channel, out_channel, stride=1, isDownsample=False):
        super(BasicBlock, self).__init__()
        self.isDownsample = isDownsample
        self.conv1 = nn.Conv2d(in_channel, out_channel, 3, stride, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channel, out_channel, 3, 1, 1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)

        self.downsample = None
        if isDownsample:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channel, out_channel, 1, 2, bias=False),
                nn.BatchNorm2d(out_channel)
            )

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)

        if self.isDownsample:
            out += self.downsample(x)
        return out


class ResNet(nn.Module):

    def __init__(self):
        super(ResNet, self).__init__()

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(3, 2, padding=1)

        self.layer1 = nn.Sequential(
            BasicBlock(64, 64),
            BasicBlock(64, 64)
        )

        self.layer2 = nn.Sequential(
            BasicBlock(64, 128, stride=2, isDownsample=True),
            BasicBlock(128, 128)

        )

        self.layer3 = nn.Sequential(
            BasicBlock(128, 256, stride=2, isDownsample=True),
            BasicBlock(256, 256)
        )

        self.layer4 = nn.Sequential(
            BasicBlock(256, 512, stride=2, isDownsample=True),
            BasicBlock(512, 512)
        )
        self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
        self.fc = nn.Linear(512, 1000, bias=True)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x


if __name__ == '__main__':
    model = ResNet()
    image = np.random.randn(1, 3, 224, 224)
    image = torch.tensor(image, dtype=torch.float32)
    output = model(image)
    print(model)
    print(output.shape)

GoogleLeNet
output是主干输出, output_1是第一个辅助输出,output_2是第二个辅助输出

import torch
from torch import nn
import numpy as np


class BasicConv2d(nn.Module):

    def __init__(self, in_channel, out_channel, kernel_size, stride, padding=0):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, bias=False)
        self.bn = nn.BatchNorm2d(out_channel)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class InceptionAux(nn.Module):

    def __init__(self, in_channel, out_channel):
        super(InceptionAux, self).__init__()
        self.avgpool = nn.AdaptiveAvgPool2d(output_size=(4, 4))
        self.conv = BasicConv2d(in_channel, out_channel, 1, 1)
        self.fc1 = nn.Linear(2048, 1024, bias=True)
        self.fc2 = nn.Linear(1024, 1000, bias=True)

    def forward(self, x):
        x = self.avgpool(x)
        x = self.conv(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = self.fc2(x)
        return x


class Inception(nn.Module):

    def __init__(self, in_channel, out_branch1, out_branch2_1, out_branch2_2, out_branch3_1, out_branch3_2,
                 out_branch4):
        super(Inception, self).__init__()
        self.branch1 = BasicConv2d(in_channel, out_branch1, 1, 1)
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channel, out_branch2_1, 1, 1),
            BasicConv2d(out_branch2_1, out_branch2_2, 3, 1, 1)
        )
        self.branch3 = nn.Sequential(
            BasicConv2d(in_channel, out_branch3_1, 1, 1),
            BasicConv2d(out_branch3_1, out_branch3_2, 3, 1, 1)
        )
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(3, 1, padding=1),
            BasicConv2d(in_channel, out_branch4, 1, 1)
        )

    def forward(self, x):
        # print('0:', x.shape)
        branch1 = self.branch1(x)
        # print('1:', branch1.shape)
        branch2 = self.branch2(x)
        # print('2:', branch2.shape)
        branch3 = self.branch3(x)
        # print('3:', branch3.shape)
        branch4 = self.branch4(x)
        # print('4:', branch4.shape)
        out = torch.cat((branch1, branch2, branch3, branch4), dim=1)
        return out


class GoogLeNet(nn.Module):

    def __init__(self):
        super(GoogLeNet, self).__init__()
        self.conv1 = BasicConv2d(3, 64, 7, 2, 3)
        self.maxpool1 = nn.MaxPool2d(3, 2)
        self.conv2 = BasicConv2d(64, 64, 1, 1)
        self.conv3 = BasicConv2d(64, 192, 3, 1, 1)
        self.maxpool2 = nn.MaxPool2d(3, 2)
        self.inception3a = Inception(in_channel=192, out_branch1=64, out_branch2_1=96, out_branch2_2=128,
                                     out_branch3_1=16, out_branch3_2=32, out_branch4=32)
        self.inception3b = Inception(in_channel=256, out_branch1=128, out_branch2_1=128, out_branch2_2=192,
                                     out_branch3_1=32, out_branch3_2=96, out_branch4=64)
        self.maxpool3 = nn.MaxPool2d(3, 2)
        self.inception4a = Inception(in_channel=480, out_branch1=192, out_branch2_1=96, out_branch2_2=208,
                                     out_branch3_1=16, out_branch3_2=48, out_branch4=64)
        self.inception4b = Inception(in_channel=512, out_branch1=160, out_branch2_1=112, out_branch2_2=224,
                                     out_branch3_1=24, out_branch3_2=64, out_branch4=64)
        self.inception4c = Inception(in_channel=512, out_branch1=128, out_branch2_1=128, out_branch2_2=256,
                                     out_branch3_1=24, out_branch3_2=64, out_branch4=64)
        self.inception4d = Inception(in_channel=512, out_branch1=112, out_branch2_1=144, out_branch2_2=288,
                                     out_branch3_1=32, out_branch3_2=64, out_branch4=64)
        self.inception4e = Inception(in_channel=528, out_branch1=256, out_branch2_1=160, out_branch2_2=320,
                                     out_branch3_1=32, out_branch3_2=128, out_branch4=128)
        self.maxpool4 = nn.MaxPool2d(2, 2)
        self.inception5a = Inception(in_channel=832, out_branch1=256, out_branch2_1=160, out_branch2_2=320,
                                     out_branch3_1=32, out_branch3_2=128, out_branch4=128)
        self.inception5b = Inception(in_channel=832, out_branch1=384, out_branch2_1=192, out_branch2_2=384,
                                     out_branch3_1=48, out_branch3_2=128, out_branch4=128)
        self.aux1 = InceptionAux(512, 128)
        self.aux2 = InceptionAux(528, 128)
        self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
        self.dropout = nn.Dropout(0.2, inplace=False)
        self.fc = nn.Linear(1024, 1000, bias=True)

    def forward(self, x):
        output = self.conv1(x)
        output = self.maxpool1(output)
        output = self.conv2(output)
        output = self.conv3(output)
        output = self.maxpool2(output)
        output = self.inception3a(output)
        output = self.inception3b(output)
        output = self.maxpool3(output)
        output = self.inception4a(output)

        output_1 = self.aux1(output)
        softmax = nn.Softmax(dim=1)
        output_1 = softmax(output_1)

        output = self.inception4b(output)
        output = self.inception4c(output)
        output = self.inception4d(output)

        output_2 = self.aux2(output)
        output_2 = softmax(output_2)

        output = self.inception4e(output)
        output = self.inception5a(output)
        output = self.inception5b(output)
        output = self.avgpool(output)
        output = torch.flatten(output, 1)
        output = self.fc(output)

        output = softmax(output)

        return [output, output_1, output_2]


if __name__ == '__main__':
    image = np.random.randn(1, 3, 224, 224)
    image = torch.tensor(image, dtype=torch.float32)

    model = GoogLeNet()
    outputs = model(image)
    for out in outputs:
        out = out.detach().numpy()
        max = np.argmax(out, axis=1)
        print(out[0, max])

上一篇下一篇

猜你喜欢

热点阅读