18.分布式缓存Redis

2022-05-30  本文已影响0人  星野君

分布式缓存

-- 基于Redis集群解决单机Redis存在的问题

单机的Redis存在四大问题:

image-20210725144240631.png

0.学习目标

1.Redis持久化

Redis有两种持久化方案:

1.1.RDB持久化

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。

1.1.1.执行时机

RDB持久化在四种情况下会执行:

1)save命令

执行下面的命令,可以立即执行一次RDB:

image-20210725144536958.png

save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。

2)bgsave命令

下面的命令可以异步执行RDB:

image-20210725144725943.png

这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。

3)停机时

Redis停机时会执行一次save命令,实现RDB持久化。

4)触发RDB条件

Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:

# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1  
save 300 10  
save 60 10000 

RDB的其它配置也可以在redis.conf文件中设置:

# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes

# RDB文件名称
dbfilename dump.rdb  

# 文件保存的路径目录
dir ./ 

1.1.2.RDB原理

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。

fork采用的是copy-on-write技术:

image-20210725151319695.png

1.1.3.小结

RDB方式bgsave的基本流程?

RDB会在什么时候执行?save 60 1000代表什么含义?

RDB的缺点?

1.2.AOF持久化

1.2.1.AOF原理

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

image-20210725151543640.png

1.2.2.AOF配置

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always 
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec 
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no

三种策略对比:

image-20210725151654046.png

1.2.3.AOF文件重写

因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

image-20210725151729118.png

如图,AOF原本有三个命令,但是set num 123 和 set num 666都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。

所以重写命令后,AOF文件内容就是:mset name jack num 666

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写 
auto-aof-rewrite-min-size 64mb 

1.3.RDB与AOF对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

image-20210725151940515.png

2.Redis主从

2.1.搭建主从架构

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

image-20210725152037611.png

具体搭建流程参考《Redis集群》:

image-20210725152052501.png

2.2.主从数据同步原理

2.2.1.全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:

image-20210725152222497.png

这里有一个问题,master如何得知salve是第一次来连接呢??

有几个概念,可以作为判断依据:

因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。

因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。

master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。

master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

如图:

image-20210725152700914.png

完整流程描述:

2.2.2.增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:

image-20210725153201086.png

那么master怎么知道slave与自己的数据差异在哪里呢?

2.2.3.repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。

这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:

image-20210725153359022.png

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:

image-20210725153524190.png

直到数组被填满:

image-20210725153715910.png

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:

image-20210725153937031.png

如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:

image-20210725154155984.png

棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。

image-20210725154216392.png

2.3.主从同步优化

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

主从从架构图:

image-20210725154405899.png

2.4.小结

简述全量同步和增量同步区别?

什么时候执行全量同步?

什么时候执行增量同步?

3.Redis哨兵

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。

3.1.哨兵原理

3.1.1.集群结构和作用

哨兵的结构如图:

image-20210725154528072.png

哨兵的作用如下:

3.1.2.集群监控原理

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线

•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。

image-20210725154632354.png

3.1.3.集群故障恢复原理

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

当选出一个新的master后,该如何实现切换呢?

流程如下:

image-20210725154816841.png

3.1.4.小结

Sentinel的三个作用是什么?

Sentinel如何判断一个redis实例是否健康?

故障转移步骤有哪些?

3.2.搭建哨兵集群

具体搭建流程参考课前资料《Redis集群.md》:

image-20210725155019276.png

3.3.RedisTemplate

在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。

下面,我们通过一个测试来实现RedisTemplate集成哨兵机制。

3.3.1.导入Demo工程

首先,我们引入课前资料提供的Demo工程:

image-20210725155124958.png

3.3.2.引入依赖

在项目的pom文件中引入依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3.3.3.配置Redis地址

然后在配置文件application.yml中指定redis的sentinel相关信息:

spring:
  redis:
    sentinel:
      master: mymaster
      nodes:
        - 192.168.150.101:27001
        - 192.168.150.101:27002
        - 192.168.150.101:27003

3.3.4.配置读写分离

在项目的启动类中,添加一个新的bean:

@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
    return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

4.Redis分片集群

4.1.搭建分片集群

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

使用分片集群可以解决上述问题,如图:

image-20210725155747294.png

分片集群特征:

具体搭建流程参考课前资料《Redis集群.md》:

image-20210725155806288.png

4.2.散列插槽

4.2.1.插槽原理

Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:

image-20210725155820320.png

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:

例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。

image-20210725155850200.png

如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到103节点。

到了7003后,执行get num时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点

4.2.1.小结

Redis如何判断某个key应该在哪个实例?

如何将同一类数据固定的保存在同一个Redis实例?

4.3.集群伸缩

redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:

image-20210725160138290.png

比如,添加节点的命令:

image-20210725160448139.png

4.3.1.需求分析

需求:向集群中添加一个新的master节点,并向其中存储 num = 10

这里需要两个新的功能:

4.3.2.创建新的redis实例

创建一个文件夹:

mkdir 7004

拷贝配置文件:

cp redis.conf /7004

修改配置文件:

sed /s/6379/7004/g 7004/redis.conf

启动

redis-server 7004/redis.conf

4.3.3.添加新节点到redis

添加节点的语法如下:

image-20210725160448139.png

执行命令:

redis-cli --cluster add-node  192.168.150.101:7004 192.168.150.101:7001

通过命令查看集群状态:

redis-cli -p 7001 cluster nodes

如图,7004加入了集群,并且默认是一个master节点:

image-20210725161007099.png

但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上

4.3.4.转移插槽

我们要将num存储到7004节点,因此需要先看看num的插槽是多少:

image-20210725161241793.png

如上图所示,num的插槽为2765.

我们可以将0~3000的插槽从7001转移到7004,命令格式如下:

image-20210725161401925.png

具体命令如下:

建立连接:

image-20210725161506241.png

得到下面的反馈:

image-20210725161540841.png

询问要移动多少个插槽,我们计划是3000个:

新的问题来了:

image-20210725161637152.png

那个node来接收这些插槽??

显然是7004,那么7004节点的id是多少呢?

image-20210725161731738.png

复制这个id,然后拷贝到刚才的控制台后:

image-20210725161817642.png

这里询问,你的插槽是从哪里移动过来的?

这里我们要从7001获取,因此填写7001的id:

image-20210725162030478.png

填完后,点击done,这样插槽转移就准备好了:

image-20210725162101228.png

确认要转移吗?输入yes:

然后,通过命令查看结果:

image-20210725162145497.png

可以看到:

image-20210725162224058.png

目的达成。

4.4.故障转移

集群初识状态是这样的:

image-20210727161152065.png

其中7001、7002、7003都是master,我们计划让7002宕机。

4.4.1.自动故障转移

当集群中有一个master宕机会发生什么呢?

直接停止一个redis实例,例如7002:

redis-cli -p 7002 shutdown

1)首先是该实例与其它实例失去连接

2)然后是疑似宕机:

image-20210725162319490.png

3)最后是确定下线,自动提升一个slave为新的master:

image-20210725162408979.png

4)当7002再次启动,就会变为一个slave节点了:

image-20210727160803386.png

4.4.2.手动故障转移

利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:

image-20210725162441407.png

这种failover命令可以指定三种模式:

案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位

步骤如下:

1)利用redis-cli连接7002这个节点

2)执行cluster failover命令

如图:

image-20210727160037766.png

效果:

image-20210727161152065.png

4.5.RedisTemplate访问分片集群

RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:

1)引入redis的starter依赖

2)配置分片集群地址

3)配置读写分离

与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:

spring:
  redis:
    cluster:
      nodes:
        - 192.168.150.101:7001
        - 192.168.150.101:7002
        - 192.168.150.101:7003
        - 192.168.150.101:8001
        - 192.168.150.101:8002
        - 192.168.150.101:8003
上一篇下一篇

猜你喜欢

热点阅读