“AI Earth”人工智能创新挑战赛——AI助力精准气象和海洋
BaseLine提交需要了解阿里云天池的Docker构建与提交,内容可以参考:https://www.jianshu.com/p/d871920cb472
竞赛题目
发生在热带太平洋上的厄尔尼诺-南方涛动(ENSO)现象是地球上最强、最显著的年际气候信号。通过大气或海洋遥相关过程,经常会引发洪涝、干旱、高温、雪灾等极端事件,对全球的天气、气候以及粮食产量具有重要的影响。准确预测ENSO,是提高东亚和全球气候预测水平和防灾减灾的关键。
本次赛题是一个时间序列预测问题。基于历史气候观测和模式模拟数据,利用T时刻过去12个月(包含T时刻)的时空序列(气象因子),构建预测ENSO的深度学习模型,预测未来1-24个月的Nino3.4指数,如下图所示:
enter image description here
图1 赛题示意图
竞赛数据
数据简介
本次比赛使用的数据包括CMIP5/6模式的历史模拟数据和美国SODA模式重建的近100多年历史观测同化数据。每个样本包含以下气象及时空变量:海表温度异常(SST),热含量异常(T300),纬向风异常(Ua),经向风异常(Va),数据维度为(year,month,lat,lon)。对于训练数据提供对应月份的Nino3.4 index标签数据。
训练数据说明
每个数据样本第一维度(year)表征数据所对应起始年份,对于CMIP数据共4645年,其中1-2265为CMIP6中15个模式提供的151年的历史模拟数据(总共:151年 *15 个模式=2265);2266-4645为CMIP5中17个模式提供的140年的历史模拟数据(总共:140年 *17 个模式=2380)。对于历史观测同化数据为美国提供的SODA数据。
其中每个样本第二维度(mouth)表征数据对应的月份,对于训练数据均为36,对应的从当前年份开始连续三年数据(从1月开始,共36月),比如:
SODA_train.nc中[0,0:36,:,:]为第1-第3年逐月的历史观测数据;
SODA_train.nc中[1,0:36,:,:]为第2-第4年逐月的历史观测数据;
…,
SODA_train.nc中[99,0:36,:,:]为第100-102年逐月的历史观测数据。
和
CMIP_train.nc中[0,0:36,:,:]为CMIP6第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[150,0:36,:,:]为CMIP6第一个模式提供的第151-第153年逐月的历史模拟数据;
CMIP_train.nc中[151,0:36,:,:]为CMIP6第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2265,0:36,:,:]为CMIP5第一个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[2405,0:36,:,:]为CMIP5第二个模式提供的第1-第3年逐月的历史模拟数据;
…,
CMIP_train.nc中[4644,0:36,:,:]为CMIP5第17个模式提供的第140-第142年逐月的历史模拟数据。
其中每个样本第三、第四维度分别代表经纬度(南纬55度北纬60度,东经0360度),所有数据的经纬度范围相同。
训练数据标签说明
标签数据为Nino3.4 SST异常指数,数据维度为(year,month)。
CMIP(SODA)_train.nc对应的标签数据当前时刻Nino3.4 SST异常指数的三个月滑动平均值,因此数据维度与维度介绍同训练数据一致
注:三个月滑动平均值为当前月与未来两个月的平均值。
测试数据说明
测试用的初始场(输入)数据为国际多个海洋资料同化结果提供的随机抽取的n段12个时间序列,数据格式采用NPY格式保存,维度为(12,lat,lon, 4),12为t时刻及过去11个时刻,4为预测因子,并按照SST,T300,Ua,Va的顺序存放。
测试集文件序列的命名规则:test_编号起始月份终止月份.npy,如test_00001_01_12_.npy
。
数据(Netcdf文件)读取方法
(1) https://www.giss.nasa.gov/tools/panoply/ panoply可视化文件
(2) Python中xarray/netCDF4 库
提交说明
选手针对测试集中每个测试样本,预测未来24个月的Nino3.4指数,并保存为和测试样本同名的npy格式文件,其中Nino3.4指数均以float格式保存。例如针对test_00001_01_12_.npy样本,预测结果保存为test_00001_01_12_.npy。将测试集所有样本预测结果文件保存在result文件夹下,并打包为result.zip。
评估指标
参赛选手提交的预测结果采用客观定量评分办法,该方法基于相关系数技巧评分(Correlation coefficient)和均方根误差(RMSE),相关系数及方法说明可参考http://www.cawcr.gov.au/projects/verification/,当预报时效越长所占的评分比重越高,系统会自动的在天池平台上计分和排名,最终得分排名前6的参赛队伍将晋级终极赛 。
评分细则说明: 根据所提供的n个测试数据,对模型进行测试,得到n组未来1-24个月的序列选取对应预测时效的n个数据与标签值进行计算相关系数和均方根误差,如下图所示。并计算得分。计算公式为:
BaseLine
学习地址:http://datawhale.club/t/topic/1419
首先从Datawhale的GitHub上下载该repo,该baseline为一个基础模型,但是已经给出了训练好的权重,我们之间使用即可,另外需要对预测的代码做一些小的修改,主要是检测result文件夹是否存在,如果不存在的话就创建该文件夹。至此,就可以docker build并且push就到仓库,再到竞赛页面提交即可。(这里的操作步骤可以参看文章开始的docker使用介绍)
tips
提交之前最好在本地先运行一下,看是否有错误,以免耽误时间浪费提交次数。
docker run -it -v /Users/zp/Desktop/datawhale/team-learning-data-mining/tcdata/:/tcdata 8f5692a57547 /bin/bash
这里需要提交根据容器镜像的介绍创建tcdata
|--tcdata
|--enso_round1_test_20210201.zip
|--enso_round1_test_20210201
|--test_00001_07_06.npy
|--test_00014_02_01.npy
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import *
from tensorflow.keras.layers import Input
import numpy as np
import os
import zipfile
def RMSE(y_true, y_pred):
return tf.sqrt(tf.reduce_mean(tf.square(y_true - y_pred)))
def build_model():
inp = Input(shape=(12,24,72,4))
x_4 = Dense(1, activation='relu')(inp)
x_3 = Dense(1, activation='relu')(tf.reshape(x_4,[-1,12,24,72]))
x_2 = Dense(1, activation='relu')(tf.reshape(x_3,[-1,12,24]))
x_1 = Dense(1, activation='relu')(tf.reshape(x_2,[-1,12]))
x = Dense(64, activation='relu')(x_1)
x = Dropout(0.25)(x)
x = Dense(32, activation='relu')(x)
x = Dropout(0.25)(x)
output = Dense(24, activation='linear')(x)
model = Model(inputs=inp, outputs=output)
adam = tf.optimizers.Adam(lr=1e-3,beta_1=0.99,beta_2 = 0.99)
model.compile(optimizer=adam, loss=RMSE)
return model
model = build_model()
model.load_weights('./user_data/model_data/model_mlp_baseline.h5')
test_path = './tcdata/enso_round1_test_20210201/'
### 1. 测试数据读取
files = os.listdir(test_path)
test_feas_dict = {}
for file in files:
test_feas_dict[file] = np.load(test_path + file)
print(file)
### 2. 结果预测
test_predicts_dict = {}
for file_name,val in test_feas_dict.items():
test_predicts_dict[file_name] = model.predict(val).reshape(-1,)
# test_predicts_dict[file_name] = model.predict(val.reshape([-1,12])[0,:])
### 3.存储预测结果
if os.path.isdir('/result/'):
pass
else:
os.mkdir('/result/')
for file_name,val in test_predicts_dict.items():
np.save('./result/' + file_name,val)
#打包目录为zip文件(未压缩)
def make_zip(source_dir='./result/', output_filename = 'result.zip'):
zipf = zipfile.ZipFile(output_filename, 'w')
pre_len = len(os.path.dirname(source_dir))
source_dirs = os.walk(source_dir)
print(source_dirs)
for parent, dirnames, filenames in source_dirs:
print(parent, dirnames)
for filename in filenames:
if '.npy' not in filename:
continue
pathfile = os.path.join(parent, filename)
arcname = pathfile[pre_len:].strip(os.path.sep) #相对路径
zipf.write(pathfile, arcname)
zipf.close()
make_zip()