005 图像像素的算术操作
2019-07-25 本文已影响0人
几时见得清梦
- 本节内容:像素的加减乘除
- 两幅图像进行加减乘除时,图像类型、通道数、大小必须都一致。
C++
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int artc, char** argv) {
Mat src1 = imread("D:/vcprojects/images/LinuxLogo.jpg");
Mat src2 = imread("D:/vcprojects/images/WindowsLogo.jpg");
if (src1.empty() || src2.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input", CV_WINDOW_AUTOSIZE);
imshow("input1", src1);
imshow("input2", src2);
int height = src1.rows;
int width = src1.cols;
int b1 = 0, g1 = 0, r1 = 0;
int b2 = 0, g2 = 0, r2 = 0;
int b = 0, g = 0, r = 0;
//自己实现加减乘除
Mat result = Mat::zeros(src1.size(), src1.type());
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
b1 = src1.at<Vec3b>(row, col)[0];//读出来是int类型
g1 = src1.at<Vec3b>(row, col)[1];
r1 = src1.at<Vec3b>(row, col)[2];
b2 = src2.at<Vec3b>(row, col)[0];
g2 = src2.at<Vec3b>(row, col)[1];
r2 = src2.at<Vec3b>(row, col)[2];
//saturate_cast是C++函数,功能是实现精准的数据转型操作(损失很少精度,转型必然损失精度),如int转cchar、short转long等。建议对像素值转型时使用此函数。
//为什么要对像素值转型为uchar类型:读出来的b1和b2都是int型,若相加后不转型则可能大于255、相减后不转型可能大于0。RGB的像素值范围是[0,255],不转型的话,无法用一个字节表示,会导致溢出。
//saturate_cast的作用:大于255时截断高位保留低位,认为是255;小于0时认为是0。
result.at<Vec3b>(row, col)[0] = saturate_cast<uchar>(b1 + b2);
result.at<Vec3b>(row, col)[1] = saturate_cast<uchar>(g1 + g2);//uchar是一个字节8位的
result.at<Vec3b>(row, col)[2] = saturate_cast<uchar>(r1 + r2);
}
}
imshow("output", result);
//调用OpenCV的API完成加减乘除
Mat add_result = Mat::zeros(src1.size(), src1.type()); //创建空白图像
add(src1, src2, add_result); //add有三个参数(第一张图,第二张图,相加结果)。有时add有第四个参数,是mask。
imshow("add_result", add_result);
Mat sub_result = Mat::zeros(src1.size(), src1.type());
subtract(src1, src2, sub_result);
imshow("sub_result", sub_result);
Mat mul_result = Mat::zeros(src1.size(), src1.type());
multiply(src1, src2, mul_result);
imshow("mul_result", mul_result);
Mat div_result = Mat::zeros(src1.size(), src1.type());
divide(src1, src2, div_result);
imshow("div_result", div_result);
waitKey(0);
return 0;
}
Python
import cv2 as cv
import numpy as np
src1 = cv.imread("D:/vcprojects/images/LinuxLogo.jpg");
src2 = cv.imread("D:/vcprojects/images/WindowsLogo.jpg");
cv.imshow("input1", src1)
cv.imshow("input2", src2)
h, w, ch = src1.shape
print("h , w, ch", h, w, ch)
add_result = np.zeros(src1.shape, src1.dtype); # 创建全0图像,shape和data type与原图像相同
cv.add(src1, src2, add_result);
cv.imshow("add_result", add_result);
sub_result = np.zeros(src1.shape, src1.dtype);
cv.subtract(src1, src2, sub_result);
cv.imshow("sub_result", sub_result);
mul_result = np.zeros(src1.shape, src1.dtype);
cv.multiply(src1, src2, mul_result);
cv.imshow("mul_result", mul_result);
div_result = np.zeros(src1.shape, src1.dtype);
cv.divide(src1, src2, div_result);
cv.imshow("div_result", div_result);
cv.waitKey(0)
cv.destroyAllWindows()