LeetCode #104 #111 2018-08-05

2018-08-05  本文已影响0人  40巨盗

104. Maximum Depth of Binary Tree

https://leetcode.com/problems/maximum-depth-of-binary-tree/description/

一般都是用递归实现。思路很简单,只需要对走到空结点返回0,然后其他依次按层递增,取左右子树中大的深度加1作为自己的深度即可。
代码如下:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def maxDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if not root:
            return 0
        return max(self.maxDepth(root.left), self.maxDepth(root.right)) + 1

非递归解法一般采用层序遍历(相当于图的BFS),因为如果使用其他遍历方式也需要同样的复杂度O(n). 层序遍历理解上直观一些,维护到最后的level便是树的深度。
代码如下:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def maxDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if not root:
            return 0
        queue = [root]
        cur_num = 1
        nxt_num = 0
        level = 0
        while queue:
            node = queue.pop()
            cur_num -= 1
            if node.left:
                queue.insert(0, node.left)
                nxt_num += 1
            if node.right:
                queue.insert(0, node.right)
                nxt_num += 1
            if cur_num == 0:
                cur_num = nxt_num
                nxt_num = 0
                level += 1
        return level

111. Minimum Depth of Binary Tree

https://leetcode.com/problems/minimum-depth-of-binary-tree/description/

这道题因为是判断最小深度,所以必须增加一个叶子的判断(因为如果一个节点如果只有左子树或者右子树,我们不能取它左右子树中小的作为深度,因为那样会是0,我们只有在叶子节点才能判断深度,而在求最大深度的时候,因为一定会取大的那个,所以不会有这个问题)。这道题同样是递归和非递归的解法,递归解法比较常规的思路,比Maximum Depth of Binary Tree多加一个左右子树的判断。
代码如下:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def minDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if not root:
            return 0
        if not root.left:
            return self.minDepth(root.right) + 1
        if not root.right:
            return self.minDepth(root.left) + 1
        return min(self.minDepth(root.left), self.minDepth(root.right)) + 1

非递归解法同样采用层序遍历(相当于图的BFS),只是在检测到第一个叶子的时候就可以返回了。
代码如下:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def minDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if not root:
            return 0
        queue = [root]
        cur_num = 1
        nxt_num = 0
        level = 1
        while queue:
            node = queue.pop()
            cur_num -= 1
            if not node.left and not node.right:
                break
            if node.left:
                queue.insert(0, node.left)
                nxt_num += 1
            if node.right:
                queue.insert(0, node.right)
                nxt_num += 1
            if cur_num == 0:
                cur_num = nxt_num
                nxt_num = 0
                level += 1
        return level
上一篇下一篇

猜你喜欢

热点阅读