Java

设计模式 | 详解设计模式的七大原则

2020-06-06  本文已影响0人  一颗白菜_

一、设计模式的目的

编写软件的过程中,程序员面临着来自耦合性,内聚性以及可维护性,可扩展性,重用性,灵活性等多方面的挑战,设计模式是为了让程序具有更好的:


二、设计模式七大原则

设计模式的七大原则有:

1、单一职责原则

概念:对类来说,即一个类应该只负责一项职责

如类A负责两个不同职责:职责1、职责2。当职责1需求变更而改变A类时,可能造成职责2执行错误,因此要将类A的粒度分解为A1、A2。

单一职责原则的注意事项

2、接口隔离原则

概念:客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口上。

通俗一点来说就是一个类通过接口去依赖另一个类时,这个接口不应该存在太多多余的方法。可以将大的接口拆分成多个小的接口

示例

我们现在有一个接口,接口里面有五个方法,然后有一个类B和类D分别实现了该接口。然后类A和类C分别通过这个接口去依赖类B和类D,但是他们只会用到接口的部分方法,第一种写法如下:

package com.cxc.principle.segregation;

/**
 * 实现:类B和类D分别去实现接口1
 *      然后类A通过接口1依赖类B(使用了1,2,3方法)
 *      类C通过接口1依赖类D(使用了1,4,5方法)
 */
public class Segregation1 {

    public static void main(String[] args) {
        A a = new A();
        a.depend1(new B()); //类A通过接口去依赖类B
    }
}

/**
 * 接口1
 */
interface Interface1{
    void operation1();
    void operation2();
    void operation3();
    void operation4();
    void operation5();
}

class B implements Interface1{
    @Override
    public void operation1() {
        System.out.println("B 实现了operation1");
    }

    @Override
    public void operation2() {
        System.out.println("B 实现了operation2");
    }

    @Override
    public void operation3() {
        System.out.println("B 实现了operation3");
    }

    @Override
    public void operation4() {
        System.out.println("B 实现了operation4");
    }

    @Override
    public void operation5() {
        System.out.println("B 实现了operation5");
    }
}

class D implements Interface1{
    @Override
    public void operation1() {
        System.out.println("D 实现了operation1");
    }

    @Override
    public void operation2() {
        System.out.println("D 实现了operation2");
    }

    @Override
    public void operation3() {
        System.out.println("D 实现了operation3");
    }

    @Override
    public void operation4() {
        System.out.println("D 实现了operation4");
    }

    @Override
    public void operation5() {
        System.out.println("D 实现了operation5");
    }
}

/**
 * A类通过Interface1依赖B类,但是只会用到1,2,3方法
 */
class A{
    public void depend1(Interface1 i){
        i.operation1();
    }
    public void depend2(Interface1 i){
        i.operation2();
    }
    public void depend3(Interface1 i){
        i.operation3();
    }
}
/**
 * C类通过Interface1依赖D类,但是只会用到1,4,5方法
 */
class C{
    public void depend1(Interface1 i){
        i.operation1();
    }
    public void depend4(Interface1 i){
        i.operation4();
    }
    public void depend5(Interface1 i){
        i.operation5();
    }
}

上面这种代码实现的话,就不符合我们的接口隔离原则,接口隔离原则中强调我们要将接口依赖降低到最小接口,而不论是类A还是类C,依赖时都并没有使用到接口的全部方法。

因此我们要进行改进,将大接口分解成小接口,在此我们将接口1分为接口1,接口2和接口3:

interface Interface1{
    void operation1();
}
interface Interface2{
    void operation2();
    void operation3();
}
interface Interface3{
    void operation4();
    void operation5();
}

改进后的实现如下:

package com.cxc.principle.segregation.improve;

public class Segregation1 {

    public static void main(String[] args) {
        A a = new A();
        a.depend1(new B()); //A类通过接口去依赖B类
        a.depend2(new B());
        a.depend3(new B());

        C c = new C();
        c.depend1(new D());
        c.depend4(new D());
        c.depend5(new D());
    }
}

interface Interface1{
    void operation1();
}

interface Interface2{
    void operation2();
    void operation3();
}

interface Interface3{
    void operation4();
    void operation5();
}

class B implements Interface1,Interface2 {
    @Override
    public void operation1() {
        System.out.println("B 实现了operation1");
    }

    @Override
    public void operation2() {
        System.out.println("B 实现了operation2");
    }

    @Override
    public void operation3() {
        System.out.println("B 实现了operation3");
    }

}

class D implements Interface1,Interface3 {
    @Override
    public void operation1() {
        System.out.println("D 实现了operation1");
    }

    @Override
    public void operation4() {
        System.out.println("D 实现了operation4");
    }

    @Override
    public void operation5() {
        System.out.println("D 实现了operation5");
    }
}

/**
 * A类通过Interface1依赖B类,但是只会用到1,2,3方法
 */
class A{
    public void depend1(Interface1 i){
        i.operation1();
    }
    public void depend2(Interface2 i){
        i.operation2();
    }
    public void depend3(Interface2 i){
        i.operation3();
    }
}

/**
 * C类通过Interface1依赖D类,但是只会用到1,4,5方法
 */
class C{
    public void depend1(Interface1 i){
        i.operation1();
    }
    public void depend4(Interface3 i){
        i.operation4();
    }
    public void depend5(Interface3 i){
        i.operation5();
    }
}

这样实现就遵守了接口隔离原则,使依赖接口降低到最小接口。

3、依赖倒转原则

依赖倒转原则是指:

依赖倒转原则的注意事项和细节

依赖关系传递的三种方式

示例

我们要实现一个简单的用户接收消息的功能

package com.cxc.principle.inversion;
/**
 * 方式1问题
 *      1.简单,比较容易想到
 *      2.如果我们获取的对象是微信,短信等,则需要新增类,同时Person也要增加响应的接收方法
 *      3.解决思路:引入一个抽象的接口IReceiver,表示接收者,这样Person类与接口发现依赖。
 *                 因为Email,Weixin都属于接收的范围,他们各自实现IReceiver接口就可以了,就符合了依赖倒转原则
 */
public class DependecyInversion {
    public static void main(String[] args) {
        new Person().receive(new Email());
    }
}
class Email{
    public String getInfo(){
        return "电子邮件信息:hello,world";
    }
}

//完成person接受消息的功能
class Person{
    public void receive(Email email){
        System.out.println(email.getInfo());
    }
}

上述方式中,在Person类的接收消息方法中,直接传入了一个Email类,这样的话如果以后有其他方式比如微信、短信等消息方式还需要多写几个方法。不符合依赖倒转原则,我们可以作如下更改:将这个类替换为一个接口,实现如下:

package com.cxc.principle.inversion.improve;
public class DependecyInversion {
    public static void main(String[] args) {
        Person person = new Person();
        person.receive(new Email());
        person.receive(new WeiXin());
    }
}
/**
 * 接口
 */
interface IReceiver{
    public String getInfo();
}

/**
 * 实现类1
 */
class Email implements IReceiver{
    public String getInfo(){
        return "电子邮件信息:hello,world";
    }
}

/**
 * 实现类2
 */
class WeiXin implements IReceiver{
    @Override
    public String getInfo() {
        return "微信消息:hello,ok";
    }
}
//完成person接受消息的功能
class Person{
    public void receive(IReceiver receiver){
        System.out.println(receiver.getInfo());
    }
}

4、里氏替换原则

OO中的继承性的思考和说明

里氏替换原则

5、开闭原则

示例

有一个画图类如下:

package com.cxc.principle.ocp;

public class Ocp {

    public static void main(String[] args) {
        GraphicEditor graphicEditor = new GraphicEditor();
        graphicEditor.drawShape(new Rectangle());
        graphicEditor.drawShape(new Circle());
        graphicEditor.drawShape(new Triangle());
    }

}
class GraphicEditor {
    public void drawShape(Shape s) {
        if (s.m_type == 1)
            drawRectangle(s);
        else if (s.m_type == 2)
            drawCircle(s);
        else if (s.m_type == 3)
            drawTriangle(s);
    }

    //三角形
    public void drawRectangle(Shape r) {
        System.out.println("三角形 ");
    }
    //圆形
    public void drawCircle(Shape r) {
        System.out.println(" 圆形 ");
    }
    //矩形
    public void drawTriangle(Shape r) {
        System.out.println(" 矩形 ");
    }
}

class Shape {
    int m_type;
}
class Rectangle extends Shape {
    Rectangle() {
        super.m_type = 1;
    }
}
class Circle extends Shape {
    Circle() {
        super.m_type = 2;
    }
}
class Triangle extends Shape {
    Triangle() {
        super.m_type = 3;
    }
}

上述例子中,如果要新增一个其他的图形类,那么在GraphicEditor类中也要更改代码来加上掉这个图形类的处理,不满足开闭原则。因此我们应该修改为:把Shape做成抽象类,并提供一个抽象的draw方法,让子类去实现:

package com.cxc.principle.ocp.improve;
public class Ocp {
    public static void main(String[] args) {

        GraphicEditor graphicEditor = new GraphicEditor();
        graphicEditor.drawShape(new Rectangle());
        graphicEditor.drawShape(new Circle());
        graphicEditor.drawShape(new Triangle());
        graphicEditor.drawShape(new OtherGraphic());
    }
}
class GraphicEditor {
    public void drawShape(Shape s) {
        s.draw();
    }
    
}

//抽象类
abstract class Shape {
    int m_type;
    
    public abstract void draw();
}

class Rectangle extends Shape {
    Rectangle() {
        super.m_type = 1;
    }

    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 三角形 ");
    }
}

class Circle extends Shape {
    Circle() {
        super.m_type = 2;
    }
    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 圆形 ");
    }
}


class Triangle extends Shape {
    Triangle() {
        super.m_type = 3;
    }
    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 矩形 ");
    }
}
class OtherGraphic extends Shape {
    OtherGraphic() {
        super.m_type = 4;
    }

    @Override
    public void draw() {
        // TODO Auto-generated method stub
        System.out.println(" 其他图形 ");
    }
}

改进后,如果想加入其他图形类,直接继承抽象类然后实现抽象方法即可,不用去更改抽象类。做到了对外扩展开放(对提供方),对修改关闭(对使用方)

6、迪米特法则

示例

有一个学校,下属有各个学院和总部,现要求打印出学校总部员工id和学院员工id。

package com.cxc.principle.demeter;

import java.util.ArrayList;
import java.util.List;
public class Demeter1 {

    public static void main(String[] args) {
        SchoolManager schoolManager = new SchoolManager();
        schoolManager.printAllEmployee(new CollegeManager());

    }

}
//学校总部员工类
class Employee {
    private String id;

    public void setId(String id) {
        this.id = id;
    }

    public String getId() {
        return id;
    }
}
//学院员工
class CollegeEmployee {
    private String id;

    public void setId(String id) {
        this.id = id;
    }

    public String getId() {
        return id;
    }
}

//管理学院员工的管理类
class CollegeManager {
    //返回学院的所有员工
    public List<CollegeEmployee> getAllEmployee() {
        List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
        for (int i = 0; i < 10; i++) {
            CollegeEmployee emp = new CollegeEmployee();
            emp.setId("学院员工id= " + i);
            list.add(emp);
        }
        return list;
    }
}

//学校管理类
//分析 SchoolManager的直接朋友: Employee、CollegeManager
//CollegeEmployee 不是直接朋友,这样违背了迪米特法则
class SchoolManager {
    //返回学校总部的员工
    public List<Employee> getAllEmployee() {
        List<Employee> list = new ArrayList<Employee>();
        
        for (int i = 0; i < 5; i++) {
            Employee emp = new Employee();
            emp.setId("学校总部的员工id= " + i);
            list.add(emp);
        }
        return list;
    }

    //输入学校员工和学院员工信息
    void printAllEmployee(CollegeManager sub) {
        
        //分析问题
        //1. 这里的 CollegeEmployee 不是  SchoolManager的直接朋友
        //2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
        //3. 违反了迪米特法则
        
        //获取到学院员工
        List<CollegeEmployee> list1 = sub.getAllEmployee();
        System.out.println("------------学院员工------------");
        for (CollegeEmployee e : list1) {
            System.out.println(e.getId());
        }
        //获取到学校总部员工
        List<Employee> list2 = this.getAllEmployee();
        System.out.println("------------学校总部员工------------");
        for (Employee e : list2) {
            System.out.println(e.getId());
        }
    }
}

上述示例违反了迪米特法则,那么应该如何改进呢?
printAllEmployee方法里面输出学院员工的代码封装到学院员工管理类CollegeManager中:

//管理学院员工的管理类
class CollegeManager {
    //返回学院的所有员工
    public List<CollegeEmployee> getAllEmployee() {
        List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
        for (int i = 0; i < 10; i++) {
            CollegeEmployee emp = new CollegeEmployee();
            emp.setId("学院员工id= " + i);
            list.add(emp);
        }
        return list;
    }

    //输出学院员工的信息
    public void printEmployee(){
        List<CollegeEmployee> list1 = getAllEmployee();
        System.out.println("------------学院员工------------");
        for (CollegeEmployee e : list1) {
            System.out.println(e.getId());
        }
    }
}

对应的printAllEmployee方法调用我们封装的方法即可:

//输入学校员工和学院员工信息
    void printAllEmployee(CollegeManager sub) {
        //输出学院的员工
        sub.printEmployee();

        //获取到学校总部员工
        List<Employee> list2 = this.getAllEmployee();
        System.out.println("------------学校总部员工------------");
        for (Employee e : list2) {
            System.out.println(e.getId());
        }
    }

迪米特法则注意事项和细节

7、合成复用原则

设计原则核心思想

其实归结到底就是要注意以下几点:

上一篇 下一篇

猜你喜欢

热点阅读