Python建模与NLP自然语言处理(NLP)Machine Learning & Recommendation & NLP & DL

文章相似度-VSM空间向量模型

2019-02-13  本文已影响1人  Franchen

VSM模型原理

VSM模型实现

from math import sqrt


# 合并标签集
def create_vocabulary(tag_list1, tag_list2):
    return list(set(tag_list1+tag_list2))


# 统计词频
def calc_tag_frequency(tag_list):
    tag_frequency = {}
    tag_set = set(tag_list)
    for tag in tag_set:
        tag_frequency[tag] = tag_list.count(tag)
    return tag_frequency


# 建立词频向量
def create_vector(tag_frequency, vocabulary):
    vector = []
    tag_set = tag_frequency.keys()
    for tag in vocabulary:
        if tag in tag_set:
            vector.append(tag_frequency[tag])
        else:
            vector.append(0)
    return vector


# 计算词频向量相似度
def calc_similar(vector1, vector2, tag_count):
    x = 0.0 # 分子
    y1 = 0.0 # 分母1
    y2 = 0.0 # 分母2
    tag_count = float(tag_count)
    for i in range(0, len(vector1)): # same length
        t1 = vector1[i] / tag_count
        t2 = vector2[i] / tag_count
        x = x + (t1 * t2)
        y1 += pow(t1, 2)
        y2 += pow(t2, 2)
    return x / sqrt(y1 * y2)


# VSM模型实现
def vsm(tag_list1, tag_list2):
    count = len(tag_list1) + len(tag_list2)
    vocabulary = create_vocabulary(tag_list1, tag_list2)
    vector1 = create_vector(calc_tag_frequency(tag_list1), vocabulary)
    vector2 = create_vector(calc_tag_frequency(tag_list2), vocabulary)
    similar = calc_similar(vector1, vector2, count)
    return similar


if __name__ == '__main__':
    # 1. 文章分词
    # 2. TF-IDF 提取关键词作为文章标签
    # 3. 计算VSM模型相似度
    pass
上一篇 下一篇

猜你喜欢

热点阅读