cox回归分析遇到了点问题
2021-02-16 本文已影响0人
芋圆学徒
终于做到了cox回归分析,最后返回的结果让人难以接受
> m = coxph(Surv(time, event) ~ weight, data = temp)
Warning message:
In fitter(X, Y, istrat, offset, init, control, weights = weights, :
Ran out of iterations and did not converge
> m
Call:
coxph(formula = Surv(time, event) ~ weight, data = temp)
coef exp(coef) se(coef) z p
weight101 -1.598e+01 1.146e-07 1.677e+06 0.000 1.000
weight102 -2.960e-03 9.970e-01 9.953e+01 0.000 1.000
weight103 2.601e-02 1.026e+00 9.381e+01 0.000 1.000
weight104 -2.853e-01 7.518e-01 3.605e+01 -0.008 0.994
weight105 -2.370e-01 7.890e-01 6.525e+01 -0.004 0.997
weight106 1.783e-02 1.018e+00 1.108e+02 0.000 1.000
weight108 1.159e-01 1.123e+00 1.782e+02 0.001 0.999
weight109 -2.673e-01 7.654e-01 4.360e+01 -0.006 0.995
weight110 -2.960e-03 9.970e-01 1.408e+02 0.000 1.000
weight111 5.162e-02 1.053e+00 1.797e+02 0.000 1.000
weight113 -2.937e-01 7.455e-01 5.387e+01 -0.005 0.996
weight122 7.753e+00 2.328e+03 1.011e+00 7.668 1.75e-14
难受,想哭???
想了想之后,看了一下输入数据的类型

那既然如此,我更改一下是不是就可以运行了?
> temp$weight <- as.numeric(temp$weight)
> m = coxph(Surv(time, event) ~ weight, data = temp)
> m
Call:
coxph(formula = Surv(time, event) ~ weight, data = temp)
coef exp(coef) se(coef) z p
weight 0.0005208 1.0005209 0.0056254 0.093 0.926
Likelihood ratio test=0.01 on 1 df, p=0.9264
n= 343, number of events= 82
(28 observations deleted due to missingness)
果不其然,可以了。
总结:
临床数据的整理不仅要包括全面的数据,还要注意数据类型,连续型数据要以数值型呈现。因此,临床数据的整理最后要检查数据,str()
查看一下数据最后。