Redis数据结构——字典

2024-06-12  本文已影响0人  名字是乱打的

一、复习散列表

1.1 散列表

散列表(哈希表),其思想主要是基于数组支持按照下标随机访问数据时间复杂度为O(1)的特性。可是说是数组的一种扩展
假设,我们为了方便记录某高校数学专业的所有学生的信息。要求可以按照学号(学号格式为:入学时间+年级+专业+专业内自增序号,如2011 1101 0001)能够快速找到某个学生的信息。这个时候我们可以取学号的自增序号部分,即后四位作为数组的索引下标,把学生相应的信息存储到对应的空间内即可。


如上图所示,我们把学号作为key,通过截取学号后四位的函数后计算后得到索引下标,将数据存储到数组中。当我们按照键值(学号)查找时,只需要再次计算出索引下标,然后取出相应数据即可。以上便是散列思想。

1.2 散列函数

上面的例子中,截取学号后四位的函数即是一个简单的散列函数。

//散列函数 伪代码 
int Hash(string key) {
  // 获取后四位字符
  string hashValue =int.parse(key.Substring(key.Length-4, 4));
  // 将后两位字符转换为整数
  return hashValue;
}

在这里散列函数的作用就是讲key值映射成数组的索引下标。关于散列函数的设计方法有很多,如:直接寻址法、数字分析法、随机数法等等。但即使是再优秀的设计方法也不能避免散列冲突。在散列表中散列函数不应设计太复杂。

1.3 散列冲突


散列函数具有确定性和不确定性。

散列冲突,即key1≠key2,hash(key1)=hash(key2)的情况。散列冲突是不可避免的,如果我们key的长度为100,而数组的索引数量只有50,那么再优秀的算法也无法避免散列冲突。关于散列冲突也有很多解决办法,这里简单复习两种:开放寻址法和链表法。

1.3.1 开放寻址法

开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一一个空闲位置,将其插入。比如,我们可以使用线性探测法。当我们往散列表中插入数据时,如果某个数据经过散列函数散列之后,存储位置已经被占用了,我们就从当前位置开始,依次往后查找,看是否有空闲位置,如果遍历到尾部都没有找到空闲的位置,那么我们就再从表头开始找,直到找到为止。

散列表中查找元素的时候,我们通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素。如果相等,则说明就是我们要找的元素;否则就顺序往后依次查找。如果遍历到数组中的空闲位置还没有找到,就说明要查找的元素并没有在散列表中。

对于删除操作稍微有些特别,不能单纯地把要删除的元素设置为空。因为在查找的时候,一旦我们通过线性探测方法,找到一个空闲位置,我们就可以认定散列表中不存在这个数据。但是,如果这个空闲位置是我们后来删除的,就会导致原来的查找算法失效。这里我们可以将删除的元素,特殊标记为 deleted。当线性探测查找的时候,遇到标记为 deleted 的空间,并不是停下来,而是继续往下探测。

线性探测法存在很大问题。当散列表中插入的数据越来越多时,其散列冲突的可能性就越大,极端情况下甚至要探测整个散列表,因此最坏时间复杂度为O(N)。在开放寻址法中,除了线性探测法,我们还可以二次探测和双重散列等方式。

1.3.2 链表法

链表法是一种比较常用的散列冲突解决办法,Redis使用的就是链表法来解决散列冲突。链表法的原理是:如果遇到冲突,他就会在原地址新建一个空间,然后以链表结点的形式插入到该空间。当插入的时候,我们只需要通过散列函数计算出对应的散列槽位,将其插入到对应链表中即可。

1.3.3 负载因子与rehash

我们可以使用装载因子来衡量散列表的“健康状况”。

散列表的负载因子 = 填入表中的元素个数/散列表的长度
散列表负载因子越大,代表空闲位置越少,冲突也就越多,散列表的性能会下降。

对于散列表来说,负载因子过大或过小都不好,负载因子过大,散列表的性能会下降。而负载因子过小,则会造成内存不能合理利用,从而形成内存浪费。因此我们为了保证负载因子维持在一个合理的范围内,要对散列表的大小进行收缩或扩展,即rehash。散列表的rehash过程类似于数组的收缩与扩容。

1.3.4 开放寻址法与链表法比较

对于开放寻址法解决冲突的散列表,由于数据都存储在数组中,因此可以有效地利用 CPU 缓存加快查询速度(数组占用一块连续的空间)。但是删除数据的时候比较麻烦,需要特殊标记已经删除掉的数据。而且,在开放寻址法中,所有的数据都存储在一个数组中,比起链表法来说,冲突的代价更高。所以,使用开放寻址法解决冲突的散列表,负载因子的上限不能太大。这也导致这种方法比链表法更浪费内存空间。

对于链表法解决冲突的散列表,对内存的利用率比开放寻址法要高。因为链表结点可以在需要的时候再创建,并不需要像开放寻址法那样事先申请好。链表法比起开放寻址法,对大装载因子的容忍度更高。开放寻址法只能适用装载因子小于1的情况。接近1时,就可能会有大量的散列冲突,性能会下降很多。但是对于链表法来说,只要散列函数的值随机均匀,即便装载因子变成10,也就是链表的长度变长了而已,虽然查找效率有所下降,但是比起顺序查找还是快很多。但是,链表因为要存储指针,所以对于比较小的对象的存储,是比较消耗内存的,而且链表中的结点是零散分布在内存中的,不是连续的,所以对CPU缓存是不友好的,这对于执行效率有一定的影响。

二、Redis字典

2.1 Redis字典的实现

Redis字典使用散列表最为底层实现,一个散列表里面有多个散列表节点,每个散列表节点就保存了字典中的一个键值对。

2.1.1 字典

typedef struct dict{
         //类型特定函数
         void *type;
         //私有数据
         void *privdata;
         //哈希表-见2.1.2
         dictht ht[2];
         //rehash 索引 当rehash不在进行时 值为-1
         int trehashidx; 
}dict;

type属性和privdata属性是针对不同类型的键值对,为创建多态字典而设置的。

typedef struct dictType
{
         //计算哈希值的函数 
         unsigned int  (*hashFunction) (const void *key);
         //复制键的函数
         void *(*keyDup) (void *privdata,const void *key);
         //复制值的函数
         void *(*keyDup) (void *privdata,const void *obj);
          //复制值的函数
         void *(*keyCompare) (void *privdata,const void *key1, const void *key2);
         //销毁键的函数
         void (*keyDestructor) (void *privdata, void *key);
         //销毁值的函数
         void (*keyDestructor) (void *privdata, void *obj);
}dictType;

2.1.2 散列表

typedef struct dictht
{
         //哈希表数组,C语言中,*号是为了表明该变量为指针,有几个* 号就相当于是几级指针,这里是二级指针,理解为指向指针的指针
         dictEntry **table;
         //哈希表大小
         unsigned long size;
         //哈希表大小掩码,用于计算索引值
         unsigned long sizemask;
         //该哈希已有节点的数量
         unsigned long used;
}dictht;

2.1.3 散列表节点

//哈希表节点定义dictEntry结构表示,每个dictEntry结构都保存着一个键值对。
typedef struct dictEntry
{
         //键
         void *key;
         //值
         union{
           void *val;
            uint64_tu64;
            int64_ts64;
            }v;
         // 指向下个哈希表节点,形成链表
         struct dictEntry *next;
}dictEntry;

key属性保存着键值中的键,而v属性则保存着键值对中的值,其中键值(v属性)可以是一个指针,或uint64_t整数,或int64_t整数。 next属性是指向另一个哈希表节点的指针,这个指针可以将多个哈希值相同的键值对连接在一起,解决键冲突问题。

2.2 Redis如何解决散列冲突

2.2.1 链表法

当有两个或以上的键被分配到散列表数组同一个索引上时,就发生了键冲突。Redis使用链表法解决散列冲突。每个散列表节点都有一个next指针,多个散列表节点next可以用next指针构成一个单向链表,被分配到同一个索引上的多个节点可以使用这个单向链表连接起来。

如图所示,当键k0和k1的经过散列函数得到索引值都为1时,就会使用next指针将两个节点连接起来。而由于节点没有指向链尾的指针,因此新的节点总是插入到链表的头部,排在已有节点的前面。

2.2.2 Redis rehash

随着操作的进行,散列表中保存的键值对会也会不断地增加或减少,为了保证负载因子维持在一个合理的范围,当散列表内的键值对过多或过少时,内需要定期进行rehash,以提升性能或节省内存。Redis的rehash的步骤如下:

rehash操作需要满足以下条件:

Redis这么做的目的是基于操作系统创建子进程后写时复制技术,避免不必要的写入操作。(有关BGSAVE、BGREWRITEAOF以及写时复制会在后续持久化一文详细介绍)。

2.2.3 渐进式 rehash

对于rehash我们思考一个问题如果散列表当前大小为 1GB,要想扩容为原来的两倍大小,那就需要对 1GB 的数据重新计算哈希值,并且从原来的散列表搬移到新的散列表。这种情况听着就很耗时,而生产环境中甚至会更大。为了解决一次性扩容耗时过多的情况,可以将扩容操作穿插在插入操作的过程中,分批完成。当负载因子触达阈值之后,只申请新空间,但并不将老的数据搬移到新散列表中。当有新数据要插入时,将新数据插入新散列表中,并且从老的散列表中拿出一个数据放入到新散列表。每次插入一个数据到散列表,都重复上面的过程。经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次一次性数据搬移,插入操作就都变得很快了。

Redis为了解决这个问题采用渐进式rehash方式。以下是Redis渐进式rehash的详细步骤:

说明:

本文重点

  1. 字典在redis中广泛应用,包括数据库和hash数据结构。
  2. 每个字典有两个哈希表,一个是正常使用,一个用于rehash期间使用。
  3. 当redis计算哈希时,采用的是MurmurHash2哈希算法。
  4. 哈希表采用链表法解决散列冲突,被分配到同一个地址的键会构成一个单向链表。
  5. 在rehash对哈希表进行扩展或者收缩过程中,会将所有键值对进行迁移,并且这个迁移是渐进式的迁移。

前言:
字典在Redis中的应用非常广泛,数据库与哈希对象的底层实现就是字典。
本文作者: Mr于
本文出处:https://www.cnblogs.com/hunternet/p/9989771.html
引用目的:这个文章写的太好了,我怕丢失了,就转过来了

上一篇 下一篇

猜你喜欢

热点阅读