Android源码之单例设计模式
概念:单例模式确保某个类只有一个实例,而且自行实例化并向整个系统提供这个实例。(也就是说在整个应用的生命周期内, 只有一个对象实例的存在)
一、如何使用及注意点
二、Android源码中所使用的单例;
DCL模式(双重检查锁定模式)的正确使用方式
一般我们使用DCL方法来实现单例模式时都是这样的模版代码:
private Singleton () {}
public static Singleton getInstance() {
if (mSingleton == null) {
synchronized (Singleton.class) {
if (mSingleton == null) {
mSingleton = new Singleton();
}
}
}
return mSingleton;
}
实际上,上述方法在多线程的环境下,还是会有可能创建多个实例。为什么呢?
mSingleton = new Singleton()这行代码虚拟机在执行的时候会有多个操作,大致包括:
- 为新的对象分配内存
- 调用Singleton的构造方法,初始化成员变量
- 将mSingleton这个引用指向新创建的Singleton对象的地址
在多线程环境下,每个线程的私有内存空间中都有mSingleton的副本。这导致可能存在下面的情况:
- 当在一个线程中初始化mSingleton后,主内存中的mSingleton变量的值可能并没有及时更新;
- 主内存的mSingleton变量已经更新了,但在另一个线程中的mSingleton变量没有及时从主内存中读取最新的值
这样的话就有可能创建多个实例,虽然这种几率比较小。
那怎么解决这个问题呢?答案是使用 volatile关键字
volatile关键字能够保证可见性,被volatile修饰的变量,在一个线程中被改变时会立刻同步到主内存中,而另一个线程在操作这个变量时都会先从主内存更新这个变量的值。
更保险的单例模式实现
private Singleton () {}
public static Singleton getInstance() {
if (mSingleton == null) {
synchronized (Singleton.class) {
if (mSingleton == null) {
mSingleton = new Singleton();
}
}
}
return mSingleton;
}
单例可能会引起的问题
1)、Context的泄漏
//SingleInstance.class
private volatile static SingleInstance mSingleInstance = null;
private SingleInstance (Context context) {}
public static SingleInstance getInstance(Context context) {
if (mSingleInstance == null) {
synchronized (SingleInstance.class) {
if (mSingleInstance == null) {
mSingleInstance = new SingleInstance(context);
}
}
}
return mSingleInstance;
}
//TestActivity
public class TestActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
//这样就容易出问题了
SingleInstance singleInstance = SingleInstance.getInstance(this);
}
@Override
protected void onDestroy() {
super.onDestroy();
}
}
如上面那样直接传入TestActivity 的引用,如果当前TestActivity 退出了,但应用还没有退出,singleInstance一直持有TestActivity 的引用,TestActivity 就不能被回收了。
解决方法也很简单,传入ApplicationContext就可以了。
SingleInstance singleInstance = SingleInstance.getInstance(getApplicationContext());
2)、View的泄漏
如果单例模式的类中有跟View相关的属性,就需要注意了。搞不好也会导致内存泄漏,原因如上:
//SingleInstance.class
private volatile static SingleInstance mSingleInstance = null;
private SingleInstance (Context context) {}
public static SingleInstance getInstance(Context context) {
if (mSingleInstance == null) {
synchronized (SingleInstance.class) {
if (mSingleInstance == null) {
mSingleInstance = new SingleInstance(context);
}
}
}
return mSingleInstance;
}
//单例模式中这样持有View的引用会导致内存泄漏
private View myView = null;
public void setMyView(View myView) {
this.myView = myView;
}
解决方案是采用弱引用
private volatile static SingleInstance mSingleInstance = null;
private SingleInstance (Context context) {}
public static SingleInstance getInstance(Context context) {
if (mSingleInstance == null) {
synchronized (SingleInstance.class) {
if (mSingleInstance == null) {
mSingleInstance = new SingleInstance(context);
}
}
}
return mSingleInstance;
}
// private View myView = null;
// public void setMyView(View myView) {
// this.myView = myView;
// }
//用弱引用
private WeakReference<View> myView = null;
public void setMyView(View myView) {
this.myView = new WeakReference<View>(myView);
}
注意:弱引用可能有为空的情况。
被弱引用关联的对象只能生存到下一次垃圾收集发生之前,当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象
二、Android源码中使用的单例模式;
上面讲了如何使用及注意点,下面一起来看下android源码中,哪里用到了单例模式;
LayoutInflater 单例分析
在Android系统中,我们经常会通过Context获取系统级别的服务,比如WindowsManagerService, ActivityManagerService等,更常用的是一个叫LayoutInflater的类。这些服务会在合适的时候以单例的形式注册在系统中,在我们需要的时候就通过Context的getSystemService(String name)获取。我们以LayoutInflater为例来说明, 平时我们使用LayoutInflater较为常见的地方是在ListView的getView方法中。
@Override
public View getView(int position, View convertView, ViewGroup parent)
View itemView = null;
if (convertView == null) {
itemView = LayoutInflater.from(mContext).inflate(mLayoutId, null);
// 其他代码
} else {
itemView = convertView;
}
// 获取Holder
// 初始化每项的数据
return itemView;
}
通常我们使用LayoutInflater.from(Context)来获取LayoutInflater服务, 下面我们看看LayoutInflater.from(Context)的实现。
/**
* Obtains the LayoutInflater from the given context.
*/
public static LayoutInflater from(Context context) {
LayoutInflater LayoutInflater =
(LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
if (LayoutInflater == null) {
throw new AssertionError("LayoutInflater not found.");
}
return LayoutInflater;
}
可以看到from(Context)函数内部调用的是Context类的getSystemService(String key)方法,我们跟踪到Context类看到, 该类是抽象类。
public abstract class Context {
// 省略
}
使用的getView中使用的Context对象的具体实现类是什么呢 ?其实在Application,Activity, Service,中都会存在一个Context对象,即Context的总个数为Activity个数 + Service个数 + 1。而ListView通常都是显示在Activity中,那么我们就以Activity中的Context来分析。
我们知道,一个Activity的入口是ActivityThread的main函数。在该main函数中创建一个新的ActivityThread对象,并且启动消息循环(UI线程),创建新的Activity、新的Context对象,然后将该Context对象传递给Activity。下面我们看看ActivityThread源码。
public static void main(String[] args) {
SamplingProfilerIntegration.start();
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Set the reporter for event logging in libcore
EventLogger.setReporter(new EventLoggingReporter());
Process.setArgV0("<pre-initialized>");
// 主线程消息循环
Looper.prepareMainLooper();
// 创建ActivityThread对象
ActivityThread thread = new ActivityThread();
// false 代表不是系统应用
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
AsyncTask.init();
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
private void attach(boolean system) {
sThreadLocal.set(this);
mSystemThread = system;
if (!system) {
ViewRootImpl.addFirstDrawHandler(new Runnable() {
public void run() {
ensureJitEnabled();
}
});
android.ddm.DdmHandleAppName.setAppName("<pre-initialized>",
UserHandle.myUserId());
RuntimeInit.setApplicationObject(mAppThread.asBinder());
IActivityManager mgr = ActivityManagerNative.getDefault();
try {
mgr.attachApplication(mAppThread);
} catch (RemoteException ex) {
// Ignore
}
} else {
// 省略
}
}
在main方法中,我们创建一个ActivityThread对象后,调用了其attach函数,并且参数为false. 在attach函数中, 参数为false的情况下, 会通过Binder机制与ActivityManagerService通信,并且最终调用handleLaunchActivity函数 ( 具体分析请参考老罗的博客 : Activity的启动流程),我们看看该函数的实现 。
private void handleLaunchActivity(ActivityClientRecord r, Intent customIntent) {
// 代码省略
Activity a = performLaunchActivity(r, customIntent);
// 代码省略
}
private Activity performLaunchActivity(ActivityClientRecord r, Intent customIntent) {
// System.out.println("##### [" + System.currentTimeMillis() + "] ActivityThread.performLaunchActivity(" + r + ")");
// 代码省略
Activity activity = null;
try {
java.lang.ClassLoader cl = r.packageInfo.getClassLoader();
activity = mInstrumentation.newActivity( // 1 : 创建Activity
cl, component.getClassName(), r.intent);
// 代码省略
} catch (Exception e) {
// 省略
}
try {
Application app = r.packageInfo.makeApplication(false, mInstrumentation);
if (activity != null) {
Context appContext = createBaseContextForActivity(r, activity); // 2 : 获取Context对象
CharSequence title = r.activityInfo.loadLabel(appContext.getPackageManager());
Configuration config = new Configuration(mCompatConfiguration);
// 3: 将appContext等对象attach到activity中
activity.attach(appContext, this, getInstrumentation(), r.token,
r.ident, app, r.intent, r.activityInfo, title, r.parent,
r.embeddedID, r.lastNonConfigurationInstances, config);
// 代码省略
// 4 : 调用Activity的onCreate方法
mInstrumentation.callActivityOnCreate(activity, r.state);
// 代码省略
} catch (SuperNotCalledException e) {
throw e;
} catch (Exception e) {
// 代码省略
}
return activity;
}
private Context createBaseContextForActivity(ActivityClientRecord r,
final Activity activity) {
// 5 : 创建Context对象, 可以看到实现类是ContextImpl
ContextImpl appContext = new ContextImpl(); appContext.init(r.packageInfo, r.token, this);
appContext.setOuterContext(activity);
// 代码省略
return baseContext;
}
通过上面1~5的代码分析可以知道, Context的实现类为ComtextImpl类。我们继续跟踪到ContextImpl类。
class ContextImpl extends Context {
// 代码省略
/**
* Override this class when the system service constructor needs a
* ContextImpl. Else, use StaticServiceFetcher below.
*/
static class ServiceFetcher {
int mContextCacheIndex = -1;
/**
* Main entrypoint; only override if you don't need caching.
*/
public Object getService(ContextImpl ctx) {
ArrayList<Object> cache = ctx.mServiceCache;
Object service;
synchronized (cache) {
if (cache.size() == 0) {
for (int i = 0; i < sNextPerContextServiceCacheIndex; i++) {
cache.add(null);
}
} else {
service = cache.get(mContextCacheIndex);
if (service != null) {
return service;
}
}
service = createService(ctx);
cache.set(mContextCacheIndex, service);
return service;
}
}
/**
* Override this to create a new per-Context instance of the
* service. getService() will handle locking and caching.
*/
public Object createService(ContextImpl ctx) {
throw new RuntimeException("Not implemented");
}
}
// 1 : service容器
private static final HashMap<String, ServiceFetcher> SYSTEM_SERVICE_MAP =
new HashMap<String, ServiceFetcher>();
private static int sNextPerContextServiceCacheIndex = 0;
// 2: 注册服务器
private static void registerService(String serviceName, ServiceFetcher fetcher) {
if (!(fetcher instanceof StaticServiceFetcher)) {
fetcher.mContextCacheIndex = sNextPerContextServiceCacheIndex++;
}
SYSTEM_SERVICE_MAP.put(serviceName, fetcher);
}
// 3: 静态语句块, 第一次加载该类时执行 ( 只执行一次, 保证实例的唯一性. )
static {
// 代码省略
// 注册Activity Servicer
registerService(ACTIVITY_SERVICE, new ServiceFetcher() {
public Object createService(ContextImpl ctx) {
return new ActivityManager(ctx.getOuterContext(), ctx.mMainThread.getHandler());
}});
// 注册LayoutInflater service
registerService(LAYOUT_INFLATER_SERVICE, new ServiceFetcher() {
public Object createService(ContextImpl ctx) {
return PolicyManager.makeNewLayoutInflater(ctx.getOuterContext());
}});
// 代码省略
}
// 4: 根据key获取对应的服务,
@Override
public Object getSystemService(String name) {
// 根据name来获取服务
ServiceFetcher fetcher = SYSTEM_SERVICE_MAP.get(name);
return fetcher == null ? null : fetcher.getService(this);
}
// 代码省略
}
从ContextImpl类的部分代码中可以看到,在虚拟机第一次加载该类时会注册各种服务,其中就包含了LayoutInflater Service, 将这些服务以键值对的形式存储在一个HashMap中,用户使用时只需要根据key来获取到对应的服务,从而达到单例的效果。这种模式就是上文中提到的“单例模式的实现方式5”。系统核心服务以单例形式存在,减少了资源消耗。
优缺点:
优点
- 减少内存开支
- 减少系统开销
- 可以避免对资源的多重占用
- 可以设置全局的访问点,优化和共享资源访问
缺点
单例模式一般没有接口,扩展很困难,若要扩展,除了修改代码基本上没有第二种途径可以实现。