一道递推数列极限题

2020-02-01  本文已影响0人  洛玖言

a_1=3,\,a_n=2a_{n-1}^2-1\;(n\geqslant2)
\displaystyle\lim_{n\to\infty}\dfrac{a_n}{2^na_1a_2\cdots a_{n-1}}

Sol:
a_1=3>1,\;a_n=2a_{n-1}^2-1 及数学归纳法得 a_{n}>1.

\begin{aligned} a_{n}^2-1=&(a_{n}+1)(a_{n}-1)\\ =&2^2a_{n-1}^2(a_{n-1}^2-1)\\ =&2^4a_{n-1}^2a_{n-2}^2(a_{n-2}^2-1)\\ =&\cdots\\ =&2^{2n-2}a_{n-1}^2a_{n-2}^2\cdots a_{1}^2(a_1^2-1)\\ =&2^{2n+1}a_{n-1}^2a_{n-2}^2\cdots a_{1}^2\\ =&2(2^na_{n-1}a_{n-2}\cdots a_{1})^2 \end{aligned}

\therefore\displaystyle\dfrac{a_{n}^2-1}{(2^na_{n-1}a_{n-2}\cdots a_{1})^2}=2
\because a_{n}>1
\therefore\displaystyle\lim_{n\to\infty}\dfrac{1}{2^na_{n-1}a_{n-2}\cdots a_{1}}=0

\Rightarrow\displaystyle\lim_{n\to\infty}\dfrac{1}{(2^na_{n-1}a_{n-2}\cdots a_{1})^2}=0
\therefore\begin{aligned} &\lim_{n\to\infty}\dfrac{a_n^2}{(2^na_{n-1}a_{n-2}\cdots a_{1})^2}\\ =&\lim_{n\to\infty}\dfrac{a_n^2-1}{(2^na_{n-1}a_{n-2}\cdots a_{1})^2}+\lim_{n\to\infty}\dfrac{1}{(2^na_{n-1}a_{n-2}\cdots a_{1})^2}\\ =&2 \end{aligned}

\therefore\displaystyle\lim_{n\to\infty}\dfrac{a_n}{2^na_{n-1}a_{n-2}\cdots a_{1}}=\sqrt{2}

上一篇下一篇

猜你喜欢

热点阅读