ai学习人工智能DeepLearning

【超级重磅】626篇!机器学习&深度学习资料汇总(二)

2017-04-26  本文已影响367人  Major术业

【整理】ty4z2008201《Understanding Convolutions》

【编辑】Major术业

文章链接地址:https://github.com/ty4z2008/Qix/blob/master/dl.md

201《Understanding Convolutions》

介绍:帮你理解卷积神经网络,讲解很清晰,此外还有两篇Conv Nets: A Modular Perspective,Groups & Group Convolutions. 作者的其他的关于神经网络文章也很棒

202《Introduction to Deep Learning Algorithms》

介绍:Deep Learning算法介绍,里面介绍了06年3篇让deep learning崛起的论文

203《Learning Deep Architectures for AI》

介绍:一本学习人工智能的书籍,作者是Yoshua Bengio,相关国内报道

204《Geoffrey E. Hinton个人主页》

介绍:Geoffrey Hinton是Deep Learning的大牛,他的主页放了一些介绍性文章和课件值得学习

205《PROBABILITY THEORY: THE LOGIC OF SCIENCE》

介绍:概率论:数理逻辑书籍

206《H2O》

介绍:一个用来快速的统计,机器学习并且对于数据量大的数学库

207《ICLR 2015会议的arXiv稿件合集》

介绍:在这里你可以看到最近深度学习有什么新动向。

208《Introduction to Information Retrieval》

介绍:此书在信息检索领域家喻户晓, 除提供该书的免费电子版外,还提供一个IR资源列表 ,收录了信息检索、网络信息检索、搜索引擎实现等方面相关的图书、研究中心、相关课程、子领域、会议、期刊等等,堪称全集,值得收藏

209《Information Geometry and its Applications to Machine Learning》

介绍:信息几何学及其在机器学习中的应用

210《Legal Analytics – Introduction to the Course》

介绍:课程《法律分析》介绍幻灯片。用机器学习解决法律相关分析和预测问题,相关的法律应用包括预测编码、早期案例评估、案件整体情况的预测,定价和工作人员预测,司法行为预测等。法律领域大家可能都比较陌生,不妨了解下。

211《文本上的算法》

介绍: 文中提到了最优,模型,最大熵等等理论,此外还有应用篇。推荐系统可以说是一本不错的阅读稿,关于模型还推荐一篇Generative Model 与 Discriminative Model

212《NeuralTalk》

介绍: NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.NeuralTalk是一个Python的从图像生成自然语言描述的工具。它实现了Google (Vinyals等,卷积神经网络CNN + 长短期记忆LSTM) 和斯坦福 (Karpathy and Fei-Fei, CNN + 递归神经网络RNN)的算法。NeuralTalk自带了一个训练好的动物模型,你可以拿狮子大象的照片来试试看

213《Deep Learning on Hadoop 2.0》

介绍:本文主要介绍了在Hadoop2.0上使用深度学习,文章来自paypal

214《Practical recommendations for gradient-based training of deep architectures》

介绍:用基于梯度下降的方法训练深度框架的实践推荐指导,作者是Yoshua Bengio .感谢@xuewei4d 推荐

215《Machine Learning With Statistical And Causal Methods》

介绍: 用统计和因果方法做机器学习(视频报告)

216《Machine Learning Course 180’》

介绍: 一个讲机器学习的Youtube视频教程。160集。系统程度跟书可比拟。

217《回归(regression)、梯度下降(gradient descent)》

介绍: 机器学习中的数学,作者的研究方向是机器学习,并行计算如果你还想了解一点其他的可以看看他博客的其他文章

218《美团推荐算法实践》

介绍: 美团推荐算法实践,从框架,应用,策略,查询等分析

219《Deep Learning for Answer Sentence Selection》

介绍: 深度学习用于问答系统答案句的选取

220《Learning Semantic Representations Using Convolutional Neural Networks for Web Search 》

介绍: CNN用于WEB搜索,深度学习在文本计算中的应用

221《Awesome Public Datasets》

介绍: Awesome系列中的公开数据集

222《Search Engine & Community》

介绍: 一个学术搜索引擎

223《spaCy》

介绍: 用Python和Cython写的工业级自然语言处理库,号称是速度最快的NLP库,快的原因一是用Cython写的,二是用了个很巧妙的hash技术,加速系统的瓶颈,NLP中稀松特征的存取

224《Collaborative Filtering with Spark》

介绍: Fields是个数学研究中心,上面的这份ppt是来自Fields举办的活动中Russ Salakhutdinov带来的《大规模机器学习》分享

225《Topic modeling 的经典论文》

介绍: Topic modeling 的经典论文,标注了关键点

226《Move Evaluation in Go Using Deep Convolutional Neural Networks》

介绍: 多伦多大学与Google合作的新论文,深度学习也可以用来下围棋,据说能达到六段水平

227《机器学习周刊第二期》

介绍: 新闻,paper,课程,book,system,CES,Roboot,此外还推荐一个深度学习入门与综述资料

228《Learning more like a human: 18 free eBooks on Machine Learning》

介绍: 18 free eBooks on Machine Learning

229《Recommend :Hang Li Home》

介绍:Chief scientist of Noah's Ark Lab of Huawei Technologies.He worked at the Research Laboratories of NEC Corporation during 1990 and 2001 and Microsoft Research Asia during 2001 and 2012.Paper

230《DEEPLEARNING.UNIVERSITY – AN ANNOTATED DEEP LEARNING BIBLIOGRAPHY》

介绍: DEEPLEARNING.UNIVERSITY的论文库已经收录了963篇经过分类的深度学习论文了,很多经典论文都已经收录

231《MLMU.cz - Radim ?eh??ek - Word2vec & friends (7.1.2015)》

介绍: Radim ?eh??ek(Gensim开发者)在一次机器学习聚会上的报告,关于word2vec及其优化、应用和扩展,很实用.国内网盘

232《Introducing streaming k-means in Spark 1.2》

介绍:很多公司都用机器学习来解决问题,提高用户体验。那么怎么可以让机器学习更实时和有效呢?Spark MLlib 1.2里面的Streaming K-means,由斑马鱼脑神经研究的Jeremy Freeman脑神经科学家编写,最初是为了实时处理他们每半小时1TB的研究数据,现在发布给大家用了。

233《LDA入门与Java实现》

介绍: 这是一篇面向工程师的LDA入门笔记,并且提供一份开箱即用Java实现。本文只记录基本概念与原理,并不涉及公式推导。文中的LDA实现核心部分采用了arbylon的LdaGibbsSampler并力所能及地注解了,在搜狗分类语料库上测试良好,开源在GitHub上。

234《AMiner - Open Science Platform》

介绍: AMiner是一个学术搜索引擎,从学术网络中挖掘深度知识、面向科技大数据的挖掘。收集近4000万作者信息、8000万论文信息、1亿多引用关系、链接近8百万知识点;支持专家搜索、机构排名、科研成果评价、会议排名。

235《What are some interesting Word2Vec results?》

介绍: Quora上的主题,讨论Word2Vec的有趣应用,Omer Levy提到了他在CoNLL2014最佳论文里的分析结果和新方法,Daniel Hammack给出了找特异词的小应用并提供了(Python)代码

236《机器学习公开课汇总》

介绍: 机器学习公开课汇总,虽然里面的有些课程已经归档过了,但是还有个别的信息没有。感谢课程图谱的小编

237《A First Course in Linear Algebra》

介绍: 【A First Course in Linear Algebra】Robert Beezer 有答案 有移动版、打印版 使用GNU自由文档协议 引用了杰弗逊1813年的信

238《libfacedetection》

介绍:libfacedetection是深圳大学开源的一个人脸图像识别库。包含正面和多视角人脸检测两个算法.优点:速度快(OpenCV haar+adaboost的2-3倍), 准确度高 (FDDB非公开类评测排名第二),能估计人脸角度。

239《Inverting a Steady-State》

介绍:WSDM2015最佳论文 把马尔可夫链理论用在了图分析上面,比一般的propagation model更加深刻一些。通过全局的平稳分布去求解每个节点影响系数模型。假设合理(转移受到相邻的影响系数影响)。可以用来反求每个节点的影响系数

240《机器学习入门书单》

介绍:机器学习入门书籍,具体介绍

241《The Trouble with SVMs》

介绍: 非常棒的强调特征选择对分类器重要性的文章。情感分类中,根据互信息对复杂高维特征降维再使用朴素贝叶斯分类器,取得了比SVM更理想的效果,训练和分类时间也大大降低——更重要的是,不必花大量时间在学习和优化SVM上——特征也一样no free lunch

242《Rise of the Machines》

介绍:CMU的统计系和计算机系知名教授Larry Wasserman 在《机器崛起》,对比了统计和机器学习的差异

243《实例详解机器学习如何解决问题》

介绍:随着大数据时代的到来,机器学习成为解决问题的一种重要且关键的工具。不管是工业界还是学术界,机器学习都是一个炙手可热的方向,但是学术界和工业界对机器学习的研究各有侧重,学术界侧重于对机器学习理论的研究,工业界侧重于如何用机器学习来解决实际问题。这篇文章是美团的实际环境中的实战篇

244《Gaussian Processes for Machine Learning》

介绍:面向机器学习的高斯过程,章节概要:回归、分类、协方差函数、模型选择与超参优化、高斯模型与其他模型关系、大数据集的逼近方法等,微盘下载

245《FuzzyWuzzy: Fuzzy String Matching in Python》

介绍:Python下的文本模糊匹配库,老库新推,可计算串间ratio(简单相似系数)、partial_ratio(局部相似系数)、token_sort_ratio(词排序相似系数)、token_set_ratio(词集合相似系数)等 github

246《Blocks》

介绍:Blocks是基于Theano的神经网络搭建框架,集成相关函数、管道和算法,帮你更快地创建和管理NN模块.

247《Introduction to Machine Learning》

介绍:机器学习大神Alex Smola在CMU新一期的机器学习入门课程”Introduction to Machine Learning“近期刚刚开课,课程4K高清视频同步到Youtube上,目前刚刚更新到 2.4 Exponential Families,课程视频playlist, 感兴趣的同学可以关注,非常适合入门.

248《Collaborative Feature Learning from Social Media》

介绍:用社交用户行为学习图片的协同特征,可更好地表达图片内容相似性。由于不依赖于人工标签(标注),可用于大规模图片处理,难在用户行为数据的获取和清洗;利用社会化特征的思路值得借鉴.

249《Introducing practical and robust anomaly detection in a time series》

介绍:Twitter技术团队对前段时间开源的时间序列异常检测算法(S-H-ESD)R包的介绍,其中对异常的定义和分析很值得参考,文中也提到——异常是强针对性的,某个领域开发的异常检测在其他领域直接用可不行.

250《Empower Your Team to Deal with Data-Quality Issues》

介绍:聚焦数据质量问题的应对,数据质量对各种规模企业的性能和效率都至关重要,文中总结出(不限于)22种典型数据质量问题显现的信号,以及典型的数据质量解决方案(清洗、去重、统一、匹配、权限清理等)

251《中文分词入门之资源》

介绍:中文分词入门之资源.

252《Deep Learning Summit, San Francisco, 2015》

介绍:15年旧金山深度学习峰会视频集萃,国内云盘

253《Introduction to Conditional Random Fields》

介绍:很好的条件随机场(CRF)介绍文章,作者的学习笔记

254《A Fast and Accurate Dependency Parser using Neural Networks》

介绍: 来自Stanford,用神经网络实现快速准确的依存关系解析器

255《Which GPU(s) to Get for Deep Learning: My Experience and Advice for Using GPUs in Deep Learning》

介绍:做深度学习如何选择GPU的建议

256《Sparse Linear Models》

介绍: Stanford的Trevor Hastie教授在H2O.ai Meet-Up上的报告,讲稀疏线性模型——面向“宽数据”(特征维数超过样本数)的线性模型,13年同主题报告 、讲义.

257《Awesome Computer Vision》

介绍: 分类整理的机器视觉相关资源列表,秉承Awesome系列风格,有质有量!作者的更新频率也很频繁

258《Adam Szeidl》

介绍: social networks course

259《Building and deploying large-scale machine learning pipelines》

介绍: 大规模机器学习流程的构建与部署.

260《人脸识别开发包》

介绍: 人脸识别二次开发包,免费,可商用,有演示、范例、说明书.

261《Understanding Natural Language with Deep Neural Networks Using Torch》

介绍: 采用Torch用深度学习网络理解NLP,来自Facebook 人工智能的文章.

262《The NLP Engine: A Universal Turing Machine for NLP》

介绍: 来自CMU的Ed Hovy和Stanford的Jiwei Li一篇有意思的Arxiv文章,作者用Shannon Entropy来刻画NLP中各项任务的难度.

263《TThe Probabilistic Relevance Framework: BM25 and Beyond》

介绍: 信息检索排序模型BM25(Besting Matching)。1)从经典概率模型演变而来 2)捕捉了向量空间模型中三个影响索引项权重的因子:IDF逆文档频率;TF索引项频率;文档长度归一化。3)并且含有集成学习的思想:组合了BM11和BM15两个模型。4)作者是BM25的提出者和Okapi实现者Robertson.

264《Introduction to ARMA Time Series Models – simplified》

介绍: 自回归滑动平均(ARMA)时间序列的简单介绍,ARMA是研究时间序列的重要方法,由自回归模型(AR模型)与滑动平均模型(MA模型)为基础“混合”构成.

265《Encoding Source Language with Convolutional Neural Network for Machine Translation》

介绍: 把来自target的attention signal加入source encoding CNN的输入,得到了比BBN的模型好的多neural network joint model

266《Spices form the basis of food pairing in Indian cuisine》

介绍: 揭开印度菜的美味秘诀——通过对大量食谱原料关系的挖掘,发现印度菜美味的原因之一是其中的味道互相冲突,很有趣的文本挖掘研究

267《HMM相关文章索引》

介绍: HMM相关文章,此外推荐中文分词之HMM模型详解

268《Zipf's and Heap's law》

介绍: 1)词频与其降序排序的关系,最著名的是语言学家齐夫(Zipf,1902-1950)1949年提出的Zipf‘s law,即二者成反比关系. 曼德勃罗(Mandelbrot,1924- 2010)引入参数修正了对甚高频和甚低频词的刻画 2)Heaps' law: 词汇表与语料规模的平方根(这是一个参数,英语0.4-0.6)成正比

269《I am Jürgen Schmidhuber, AMA》

介绍: Jürgen Schmidhuber在Reddit上的AMA(Ask Me Anything)主题,有不少RNN和AI、ML的干货内容,关于开源&思想&方法&建议……耐心阅读,相信你也会受益匪浅.

270《学术种子网站:AcademicTorrents》

介绍: 成G上T的学术数据,HN近期热议话题,主题涉及机器学习、NLP、SNA等。下载最简单的方法,通过BT软件,RSS订阅各集合即可

271《机器学习交互速查表》

介绍: Scikit-Learn官网提供,在原有的Cheat Sheet基础上加上了Scikit-Learn相关文档的链接,方便浏览

272《A Full Hardware Guide to Deep Learning》

介绍: 深度学习的全面硬件指南,从GPU到RAM、CPU、SSD、PCIe

273《行人检测(Pedestrian Detection)资源》

介绍:Pedestrian Detection paper & data

274《A specialized face-processing network consistent with the representational geometry of monkey face patches》

介绍: 【神经科学碰撞人工智能】在脸部识别上你我都是专家,即使细微的差别也能辨认。研究已证明人类和灵长类动物在面部加工上不同于其他物种,人类使用梭状回面孔区(FFA)。Khaligh-Razavi等通过计算机模拟出人脸识别的FFA活动,堪称神经科学与人工智能的完美结合。

275《Neural Net in C++ Tutorial》

介绍: 神经网络C++教程,本文介绍了用可调节梯度下降和可调节动量法设计和编码经典BP神经网络,网络经过训练可以做出惊人和美妙的东西出来。此外作者博客的其他文章也很不错。

276《How to Choose a Neural Network》

介绍:deeplearning4j官网提供的实际应用场景NN选择参考表,列举了一些典型问题建议使用的神经网络

277《Deep Learning (Python, C/C++, Java, Scala, Go)》

介绍:一个深度学习项目,提供了Python, C/C++, Java, Scala, Go多个版本的代码

278《Deep Learning Tutorials》

介绍:深度学习教程,github

279《自然语言处理的发展趋势——访卡内基梅隆大学爱德华·霍威教授》

介绍:自然语言处理的发展趋势——访卡内基梅隆大学爱德华·霍威教授.

280《FaceNet: A Unified Embedding for Face Recognition and Clustering》

介绍:Google对Facebook DeepFace的有力回击—— FaceNet,在LFW(Labeled Faces in the Wild)上达到99.63%准确率(新纪录),FaceNet embeddings可用于人脸识别、鉴别和聚类.

281《MLlib中的Random Forests和Boosting》

介绍:本文来自Databricks公司网站的一篇博客文章,由Joseph Bradley和Manish Amde撰写,文章主要介绍了Random Forests和Gradient-Boosted Trees(GBTs)算法和他们在MLlib中的分布式实现,以及展示一些简单的例子并建议该从何处上手.中文版.

282《Sum-Product Networks(SPN) 》

介绍:华盛顿大学Pedro Domingos团队的DNN,提供论文和实现代码.

283《Neural Network Dependency Parser》

介绍:基于神经网络的自然语言依存关系解析器(已集成至Stanford CoreNLP),特点是超快、准确,目前可处理中英文语料,基于《A Fast and Accurate Dependency Parser Using Neural Networks》 思路实现.

284《神经网络语言模型》

介绍:本文根据神经网络的发展历程,详细讲解神经网络语言模型在各个阶段的形式,其中的模型包含NNLM[Bengio,2003]、Hierarchical NNLM[Bengio, 2005], Log-Bilinear[Hinton, 2007],SENNA等重要变形,总结的特别好.

285《Classifying Spam Emails using Text and Readability Features》

介绍:经典问题的新研究:利用文本和可读性特征分类垃圾邮件。

286《BCI Challenge @ NER 2015》

介绍:Kaggle脑控计算机交互(BCI)竞赛优胜方案源码及文档,包括完整的数据处理流程,是学习Python数据处理和Kaggle经典参赛框架的绝佳实例

287《IPOL Journal · Image Processing On Line》

介绍:IPOL(在线图像处理)是图像处理和图像分析的研究期刊,每篇文章都包含一个算法及相应的代码、Demo和实验文档。文本和源码是经过了同行评审的。IPOL是开放的科学和可重复的研究期刊。我一直想做点类似的工作,拉近产品和技术之间的距离.

288《Machine learning classification over encrypted data》

介绍:出自MIT,研究加密数据高效分类问题.

289《purine2》

介绍:新加坡LV实验室的神经网络并行框架Purine: A bi-graph based deep learning framework,支持构建各种并行的架构,在多机多卡,同步更新参数的情况下基本达到线性加速。12块Titan 20小时可以完成Googlenet的训练。

290《Machine Learning Resources》

介绍:这是一个机器学习资源库,虽然比较少.但蚊子再小也是肉.有突出部分.此外还有一个由zheng Rui整理的机器学习资源.

291《Hands-on with machine learning》

介绍:Chase Davis在NICAR15上的主题报告材料,用Scikit-Learn做监督学习的入门例子.

292《The Natural Language Processing Dictionary》

介绍:这是一本自然语言处理的词典,从1998年开始到目前积累了成千上万的专业词语解释,如果你是一位刚入门的朋友.可以借这本词典让自己成长更快.

293《PageRank Approach to Ranking National Football Teams》

介绍:通过分析1930年至今的比赛数据,用PageRank计算世界杯参赛球队排行榜.

294《R Tutorial》

介绍:R语言教程,此外还推荐一个R语言教程An Introduction to R.

295《Fast unfolding of communities in large networks》

介绍:经典老文,复杂网络社区发现的高效算法,Gephi中的[Community detection](The Louvain method for community detection in large networks)即基于此.

296《NUML》

介绍: 一个面向 .net 的开源机器学习库,github地址

297《synaptic.Js》

介绍: 支持node.js的JS神经网络库,可在客户端浏览器中运行,支持LSTM等 github地址

298《Machine learning for package users with R (1): Decision Tree》

介绍: 决策树

299《Deep Learning, The Curse of Dimensionality, and Autoencoders》

介绍: 讨论深度学习自动编码器如何有效应对维数灾难,国内翻译

300《Advanced Optimization and Randomized Methods》

介绍: CMU的优化与随机方法课程,由A. Smola和S. Sra主讲,优化理论是机器学习的基石,值得深入学习 国内云(视频)

301《CS231n: Convolutional Neural Networks for Visual Recognition》

介绍: "面向视觉识别的CNN"课程设计报告集锦.近百篇,内容涉及图像识别应用的各个方面

302《Topic modeling with LDA: MLlib meets GraphX》

介绍:用Spark的MLlib+GraphX做大规模LDA主题抽取.

303《Deep Learning for Multi-label Classification》

介绍: 基于深度学习的多标签分类,用基于RBM的DBN解决多标签分类(特征)问题

304《Google DeepMind publications》

介绍: DeepMind论文集锦

305《kaldi》

介绍: 一个开源语音识别工具包,它目前托管在sourceforge上面

306《Data Journalism Handbook》

介绍: 免费电子书《数据新闻手册》, 国内有热心的朋友翻译了中文版,大家也可以在线阅读

307《Data Mining Problems in Retail》

介绍: 零售领域的数据挖掘文章.

308《Understanding Convolution in Deep Learning》

介绍: 深度学习卷积概念详解,深入浅出.

309《pandas: powerful Python data analysis toolkit》

介绍: 非常强大的Python的数据分析工具包.

310《Text Analytics 2015》

介绍: 2015文本分析(商业)应用综述.

311《Deep Learning libraries and ?rst experiments with Theano》

介绍: 深度学习框架、库调研及Theano的初步测试体会报告.

312《DEEP learning》

介绍: MIT的Yoshua Bengio, Ian Goodfellow, Aaron Courville著等人讲深度学习的新书,还未定稿,线上提供Draft chapters收集反馈,超赞!强烈推荐.

313《simplebayes》

介绍: Python下开源可持久化朴素贝叶斯分类库.

314《Paracel》

介绍:Paracel is a distributed computational framework designed for machine learning problems, graph algorithms and scientific computing in C++.

315《HanLP:Han Language processing》

介绍: 开源汉语言处理包.

316《Simple Neural Network implementation in Ruby》

介绍: 使用Ruby实现简单的神经网络例子.

317《Hacker's guide to Neural Networks》

介绍:神经网络黑客入门.

318《The Open-Source Data Science Masters》

介绍:好多数据科学家名人推荐,还有资料.

319《Text Understanding from Scratch》

介绍:实现项目已经开源在github上面Crepe

320《 Improving Distributional Similarity with Lessons Learned from Word Embeddings》

介绍:作者发现,经过调参,传统的方法也能和word2vec取得差不多的效果。另外,无论作者怎么试,GloVe都比不过word2vec.

321《CS224d: Deep Learning for Natural Language Processing》

介绍:Stanford深度学习与自然语言处理课程,Richard Socher主讲.

322《Math Essentials in Machine Learning》

介绍:机器学习中的重要数学概念.

323《Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks》

介绍:用于改进语义表示的树型LSTM递归神经网络,句子级相关性判断和情感分类效果很好.实现代码.

324《Statistical Machine Learning》

介绍:卡耐基梅隆Ryan Tibshirani和Larry Wasserman开设的机器学习课程,先修课程为机器学习(10-715)和中级统计学(36-705),聚焦统计理论和方法在机器学习领域应用.

325《AM207: Monte Carlo Methods, Stochastic Optimization》

介绍:《哈佛大学蒙特卡洛方法与随机优化课程》是哈佛应用数学研究生课程,由V Kaynig-Fittkau、P Protopapas主讲,Python程序示例,对贝叶斯推理感兴趣的朋友一定要看看,提供授课视频及课上IPN讲义.

326《Understanding Convolutions》

介绍:帮你理解卷积神经网络,讲解很清晰,此外还有两篇Conv Nets: A Modular Perspective,Groups & Group Convolutions. 作者的其他的关于神经网络文章也很棒

327《Introduction to Deep Learning Algorithms》

介绍:Deep Learning算法介绍,里面介绍了06年3篇让deep learning崛起的论文

328《Learning Deep Architectures for AI》

介绍:一本学习人工智能的书籍,作者是Yoshua Bengio,相关国内报道

329《Geoffrey E. Hinton个人主页》

介绍:Geoffrey Hinton是Deep Learning的大牛,他的主页放了一些介绍性文章和课件值得学习

330《PROBABILITY THEORY: THE LOGIC OF SCIENCE》

介绍:概率论:数理逻辑书籍

331《H2O》

介绍:一个用来快速的统计,机器学习并且对于数据量大的数学库

332《ICLR 2015会议的arXiv稿件合集》

介绍:在这里你可以看到最近深度学习有什么新动向。

333《Introduction to Information Retrieval》

介绍:此书在信息检索领域家喻户晓, 除提供该书的免费电子版外,还提供一个IR资源列表 ,收录了信息检索、网络信息检索、搜索引擎实现等方面相关的图书、研究中心、相关课程、子领域、会议、期刊等等,堪称全集,值得收藏

334《Information Geometry and its Applications to Machine Learning》

介绍:信息几何学及其在机器学习中的应用

335《Legal Analytics – Introduction to the Course》

介绍:课程《法律分析》介绍幻灯片。用机器学习解决法律相关分析和预测问题,相关的法律应用包括预测编码、早期案例评估、案件整体情况的预测,定价和工作人员预测,司法行为预测等。法律领域大家可能都比较陌生,不妨了解下。

336《文本上的算法》

介绍: 文中提到了最优,模型,最大熵等等理论,此外还有应用篇。推荐系统可以说是一本不错的阅读稿,关于模型还推荐一篇Generative Model 与 Discriminative Model

337《NeuralTalk》

介绍: NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.NeuralTalk是一个Python的从图像生成自然语言描述的工具。它实现了Google (Vinyals等,卷积神经网络CNN + 长短期记忆LSTM) 和斯坦福 (Karpathy and Fei-Fei, CNN + 递归神经网络RNN)的算法。NeuralTalk自带了一个训练好的动物模型,你可以拿狮子大象的照片来试试看

338《Deep Learning on Hadoop 2.0》

介绍:本文主要介绍了在Hadoop2.0上使用深度学习,文章来自paypal

339《Practical recommendations for gradient-based training of deep architectures》

介绍:用基于梯度下降的方法训练深度框架的实践推荐指导,作者是Yoshua Bengio .感谢@xuewei4d 推荐

340《Machine Learning With Statistical And Causal Methods》

介绍: 用统计和因果方法做机器学习(视频报告)

341《Machine Learning Course 180’》

介绍: 一个讲机器学习的Youtube视频教程。160集。系统程度跟书可比拟。

342《回归(regression)、梯度下降(gradient descent)》

介绍: 机器学习中的数学,作者的研究方向是机器学习,并行计算如果你还想了解一点其他的可以看看他博客的其他文章

343《美团推荐算法实践》

介绍: 美团推荐算法实践,从框架,应用,策略,查询等分析

344《Deep Learning for Answer Sentence Selection》

介绍: 深度学习用于问答系统答案句的选取

345《Learning Semantic Representations Using Convolutional Neural Networks for Web Search 》

介绍: CNN用于WEB搜索,深度学习在文本计算中的应用

346《Awesome Public Datasets》

介绍: Awesome系列中的公开数据集

347《Search Engine & Community》

介绍: 一个学术搜索引擎

348《spaCy》

介绍: 用Python和Cython写的工业级自然语言处理库,号称是速度最快的NLP库,快的原因一是用Cython写的,二是用了个很巧妙的hash技术,加速系统的瓶颈,NLP中稀松特征的存取

349《Collaborative Filtering with Spark》

介绍: Fields是个数学研究中心,上面的这份ppt是来自Fields举办的活动中Russ Salakhutdinov带来的《大规模机器学习》分享

350《Topic modeling 的经典论文》

介绍: Topic modeling 的经典论文,标注了关键点

351《Move Evaluation in Go Using Deep Convolutional Neural Networks》

介绍: 多伦多大学与Google合作的新论文,深度学习也可以用来下围棋,据说能达到六段水平

352《机器学习周刊第二期》

介绍: 新闻,paper,课程,book,system,CES,Roboot,此外还推荐一个深度学习入门与综述资料

353《Learning more like a human: 18 free eBooks on Machine Learning》

介绍: 18 free eBooks on Machine Learning

354《Recommend :Hang Li Home》

介绍:Chief scientist of Noah's Ark Lab of Huawei Technologies.He worked at the Research Laboratories of NEC Corporation during 1990 and 2001 and Microsoft Research Asia during 2001 and 2012.Paper

355《DEEPLEARNING.UNIVERSITY – AN ANNOTATED DEEP LEARNING BIBLIOGRAPHY》

介绍: DEEPLEARNING.UNIVERSITY的论文库已经收录了963篇经过分类的深度学习论文了,很多经典论文都已经收录

356《MLMU.cz - Radim ?eh??ek - Word2vec & friends (7.1.2015)》

介绍: Radim ?eh??ek(Gensim开发者)在一次机器学习聚会上的报告,关于word2vec及其优化、应用和扩展,很实用.国内网盘

357《Introducing streaming k-means in Spark 1.2》

介绍:很多公司都用机器学习来解决问题,提高用户体验。那么怎么可以让机器学习更实时和有效呢?Spark MLlib 1.2里面的Streaming K-means,由斑马鱼脑神经研究的Jeremy Freeman脑神经科学家编写,最初是为了实时处理他们每半小时1TB的研究数据,现在发布给大家用了。

358《LDA入门与Java实现》

介绍: 这是一篇面向工程师的LDA入门笔记,并且提供一份开箱即用Java实现。本文只记录基本概念与原理,并不涉及公式推导。文中的LDA实现核心部分采用了arbylon的LdaGibbsSampler并力所能及地注解了,在搜狗分类语料库上测试良好,开源在GitHub上。

359《AMiner - Open Science Platform》

介绍: AMiner是一个学术搜索引擎,从学术网络中挖掘深度知识、面向科技大数据的挖掘。收集近4000万作者信息、8000万论文信息、1亿多引用关系、链接近8百万知识点;支持专家搜索、机构排名、科研成果评价、会议排名。

360《What are some interesting Word2Vec results?》

介绍: Quora上的主题,讨论Word2Vec的有趣应用,Omer Levy提到了他在CoNLL2014最佳论文里的分析结果和新方法,Daniel Hammack给出了找特异词的小应用并提供了(Python)代码

361《机器学习公开课汇总》

介绍: 机器学习公开课汇总,虽然里面的有些课程已经归档过了,但是还有个别的信息没有。感谢课程图谱的小编

362《A First Course in Linear Algebra》

介绍: 【A First Course in Linear Algebra】Robert Beezer 有答案 有移动版、打印版 使用GNU自由文档协议 引用了杰弗逊1813年的信

363《libfacedetection》

介绍:libfacedetection是深圳大学开源的一个人脸图像识别库。包含正面和多视角人脸检测两个算法.优点:速度快(OpenCV haar+adaboost的2-3倍), 准确度高 (FDDB非公开类评测排名第二),能估计人脸角度。

364《Inverting a Steady-State》

介绍:WSDM2015最佳论文 把马尔可夫链理论用在了图分析上面,比一般的propagation model更加深刻一些。通过全局的平稳分布去求解每个节点影响系数模型。假设合理(转移受到相邻的影响系数影响)。可以用来反求每个节点的影响系数

365《机器学习入门书单》

介绍:机器学习入门书籍,具体介绍

366《The Trouble with SVMs》

介绍: 非常棒的强调特征选择对分类器重要性的文章。情感分类中,根据互信息对复杂高维特征降维再使用朴素贝叶斯分类器,取得了比SVM更理想的效果,训练和分类时间也大大降低——更重要的是,不必花大量时间在学习和优化SVM上——特征也一样no free lunch

367《Rise of the Machines》

介绍:CMU的统计系和计算机系知名教授Larry Wasserman 在《机器崛起》,对比了统计和机器学习的差异

368《实例详解机器学习如何解决问题》

介绍:随着大数据时代的到来,机器学习成为解决问题的一种重要且关键的工具。不管是工业界还是学术界,机器学习都是一个炙手可热的方向,但是学术界和工业界对机器学习的研究各有侧重,学术界侧重于对机器学习理论的研究,工业界侧重于如何用机器学习来解决实际问题。这篇文章是美团的实际环境中的实战篇

369《Gaussian Processes for Machine Learning》

介绍:面向机器学习的高斯过程,章节概要:回归、分类、协方差函数、模型选择与超参优化、高斯模型与其他模型关系、大数据集的逼近方法等,微盘下载

370《FuzzyWuzzy: Fuzzy String Matching in Python》

介绍:Python下的文本模糊匹配库,老库新推,可计算串间ratio(简单相似系数)、partial_ratio(局部相似系数)、token_sort_ratio(词排序相似系数)、token_set_ratio(词集合相似系数)等 github

371《Blocks》

介绍:Blocks是基于Theano的神经网络搭建框架,集成相关函数、管道和算法,帮你更快地创建和管理NN模块.

372《Introduction to Machine Learning》

介绍:机器学习大神Alex Smola在CMU新一期的机器学习入门课程”Introduction to Machine Learning“近期刚刚开课,课程4K高清视频同步到Youtube上,目前刚刚更新到 2.4 Exponential Families,课程视频playlist, 感兴趣的同学可以关注,非常适合入门.

373《Collaborative Feature Learning from Social Media》

介绍:用社交用户行为学习图片的协同特征,可更好地表达图片内容相似性。由于不依赖于人工标签(标注),可用于大规模图片处理,难在用户行为数据的获取和清洗;利用社会化特征的思路值得借鉴.

374《Introducing practical and robust anomaly detection in a time series》

介绍:Twitter技术团队对前段时间开源的时间序列异常检测算法(S-H-ESD)R包的介绍,其中对异常的定义和分析很值得参考,文中也提到——异常是强针对性的,某个领域开发的异常检测在其他领域直接用可不行.

375《Empower Your Team to Deal with Data-Quality Issues》

介绍:聚焦数据质量问题的应对,数据质量对各种规模企业的性能和效率都至关重要,文中总结出(不限于)22种典型数据质量问题显现的信号,以及典型的数据质量解决方案(清洗、去重、统一、匹配、权限清理等)

376《中文分词入门之资源》

介绍:中文分词入门之资源.

377《Deep Learning Summit, San Francisco, 2015》

介绍:15年旧金山深度学习峰会视频集萃,国内云盘

378《Introduction to Conditional Random Fields》

介绍:很好的条件随机场(CRF)介绍文章,作者的学习笔记

379《A Fast and Accurate Dependency Parser using Neural Networks》

介绍: 来自Stanford,用神经网络实现快速准确的依存关系解析器

380《Which GPU(s) to Get for Deep Learning: My Experience and Advice for Using GPUs in Deep Learning》

介绍:做深度学习如何选择GPU的建议

381《Sparse Linear Models》

介绍: Stanford的Trevor Hastie教授在H2O.ai Meet-Up上的报告,讲稀疏线性模型——面向“宽数据”(特征维数超过样本数)的线性模型,13年同主题报告 、讲义.

382《Awesome Computer Vision》

介绍: 分类整理的机器视觉相关资源列表,秉承Awesome系列风格,有质有量!作者的更新频率也很频繁

383《Adam Szeidl》

介绍: social networks course

384《Building and deploying large-scale machine learning pipelines》

介绍: 大规模机器学习流程的构建与部署.

385《人脸识别开发包》

介绍: 人脸识别二次开发包,免费,可商用,有演示、范例、说明书.

386《Understanding Natural Language with Deep Neural Networks Using Torch》

介绍: 采用Torch用深度学习网络理解NLP,来自Facebook 人工智能的文章.

387《The NLP Engine: A Universal Turing Machine for NLP》

介绍: 来自CMU的Ed Hovy和Stanford的Jiwei Li一篇有意思的Arxiv文章,作者用Shannon Entropy来刻画NLP中各项任务的难度.

388《TThe Probabilistic Relevance Framework: BM25 and Beyond》

介绍: 信息检索排序模型BM25(Besting Matching)。1)从经典概率模型演变而来 2)捕捉了向量空间模型中三个影响索引项权重的因子:IDF逆文档频率;TF索引项频率;文档长度归一化。3)并且含有集成学习的思想:组合了BM11和BM15两个模型。4)作者是BM25的提出者和Okapi实现者Robertson.

389《Introduction to ARMA Time Series Models – simplified》

介绍: 自回归滑动平均(ARMA)时间序列的简单介绍,ARMA是研究时间序列的重要方法,由自回归模型(AR模型)与滑动平均模型(MA模型)为基础“混合”构成.

390《Encoding Source Language with Convolutional Neural Network for Machine Translation》

介绍: 把来自target的attention signal加入source encoding CNN的输入,得到了比BBN的模型好的多neural network joint model

391《Spices form the basis of food pairing in Indian cuisine》

介绍: 揭开印度菜的美味秘诀——通过对大量食谱原料关系的挖掘,发现印度菜美味的原因之一是其中的味道互相冲突,很有趣的文本挖掘研究

392《HMM相关文章索引》

介绍: HMM相关文章,此外推荐中文分词之HMM模型详解

393《Zipf's and Heap's law》

介绍: 1)词频与其降序排序的关系,最著名的是语言学家齐夫(Zipf,1902-1950)1949年提出的Zipf‘s law,即二者成反比关系. 曼德勃罗(Mandelbrot,1924- 2010)引入参数修正了对甚高频和甚低频词的刻画 2)Heaps' law: 词汇表与语料规模的平方根(这是一个参数,英语0.4-0.6)成正比

394《I am Jürgen Schmidhuber, AMA》

介绍: Jürgen Schmidhuber在Reddit上的AMA(Ask Me Anything)主题,有不少RNN和AI、ML的干货内容,关于开源&思想&方法&建议……耐心阅读,相信你也会受益匪浅.

395《学术种子网站:AcademicTorrents》

介绍: 成G上T的学术数据,HN近期热议话题,主题涉及机器学习、NLP、SNA等。下载最简单的方法,通过BT软件,RSS订阅各集合即可

396《机器学习交互速查表》

介绍: Scikit-Learn官网提供,在原有的Cheat Sheet基础上加上了Scikit-Learn相关文档的链接,方便浏览

397《A Full Hardware Guide to Deep Learning》

介绍: 深度学习的全面硬件指南,从GPU到RAM、CPU、SSD、PCIe

398《行人检测(Pedestrian Detection)资源》

介绍:Pedestrian Detection paper & data

399《A specialized face-processing network consistent with the representational geometry of monkey face patches》

介绍: 【神经科学碰撞人工智能】在脸部识别上你我都是专家,即使细微的差别也能辨认。研究已证明人类和灵长类动物在面部加工上不同于其他物种,人类使用梭状回面孔区(FFA)。Khaligh-Razavi等通过计算机模拟出人脸识别的FFA活动,堪称神经科学与人工智能的完美结合。

400《Neural Net in C++ Tutorial》

介绍: 神经网络C++教程,本文介绍了用可调节梯度下降和可调节动量法设计和编码经典BP神经网络,网络经过训练可以做出惊人和美妙的东西出来。此外作者博客的其他文章也很不错。

上一篇下一篇

猜你喜欢

热点阅读