19届今日头条笔试题(8-25)

2018-08-28  本文已影响0人  yelie

1、

1.png
输入:
10
0
5 3 0
8 4 0
9 0
9 0
3 0
0
7 9 0
0
9 7 0
输出:
2

这题使用并查集可能会超时,应当使用DFS或BFS解决。

import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;

public class test1 {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int num = scan.nextInt();
        Queue<Integer>[] queue = (LinkedList<Integer>[]) new LinkedList[num+1];
        for (int i = 1; i <= num; i++){
            queue[i] = new LinkedList<>();
        }
        for (int i = 1; i <= num; i++){
            int k = scan.nextInt();
            while (k != 0){
                queue[i].add(k);
                queue[k].add(i);
                k = scan.nextInt();
            }
        }
        boolean[] marked = new boolean[num+1]; //维护一个标记数组
        int count = 0;
        for (int i = 1; i <= num; i++){
            if (!marked[i]) {
                dfs(queue, marked, i);
                count++;
            }
        }
        System.out.println(count);
    }

    public static void dfs(Queue<Integer>[] queue, boolean[] marked, int v){
        marked[v] = true;
        for (int w : queue[v]){
            if (!marked[w]) {
                dfs(queue, marked, w);
            }
        }
    }
}

2、

2.png
输入:
1
输出:
10

思路是用动态规划来做,dp[i]=dp[i-1]中全为数字的数量+dp[i-1]中加减号的数量(添加一个数字)+dp[i-1]中连续数字的对数(添加一个加号或减号)+dp[i-2]中加减号的数量(添加左右括号);但觉得会出现很多重复的情况,暂未想出结果。

3、

3.png
输入:
3
2
helloworld
hdlrowolle
2
helloworld
worldhello
2
abcde
acbde
输出:
Yeah
Yeah
Sad

一道很常见的字符串匹配题

import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class test3 {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int num = Integer.parseInt(scan.nextLine());
        String[] result = new String[num];
        for(int i = 0; i < num; i++){
            int n = Integer.parseInt(scan.nextLine());
            String[] str = new String[n];
            for(int j = 0; j < n; j++){
                str[j] = scan.nextLine();
            }
            if(resolve(str)) result[i]="Yeah";
            else result[i]="Sad";
        }
        for(int i = 0; i < num; i++){
            System.out.println(result[i]);
        }
    }

    public static boolean resolve(String[] str){
        for(int i = 0; i < str.length-1; i++)
            for(int j = i + 1; j < str.length; j++)
                if(str[i].length() == str[j].length())
                    if(find(str[i],str[j])) return true;
        return false;
    }

    public static boolean find(String str1, String str2){
        String s1 = str1 + str1;
        Pattern p = Pattern.compile(str2);
        Matcher m = p.matcher(s1);
        if(m.find()) return true;
        String s2 =new StringBuilder(str2).reverse().toString();
        p = Pattern.compile(s2);
        m = p.matcher(s1);
        if(m.find()) return true;
        return false;
    }
}

4、

4.png
输入:
4 3
10 3 7 5
输出:
4

求最长上升序列(LIS),常见的方法是对每个数遍历其前面有多少个小于它的数,但这样的时间复杂度为O(n^2)。另一种方法是维护一个栈,如果当前数字大于栈顶数字,则直接存入栈顶;如果小于栈顶数字,则存入栈中最接近且大于等于该数字的位置(二分法查找),时间复杂度是O(nlogn)。

import java.util.*;

public class test4 {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int num = scan.nextInt();
        int count = scan.nextInt();
        int[] arr = new int[num];
        for (int i = 0; i < num; i++){
            arr[i] = scan.nextInt();
        }
        Map<Integer, Integer> map = new HashMap<>();
        map.put(0, arr[0]);
        for (int i = 0; i < count; i++){
            for (int j = 0; j < num; j++){
                if (arr[j] >= map.get(map.size()-1))
                    map.put(map.size(), arr[j]);
                else {
                    map.put(find(map, arr[j]), arr[j]);
                }
            }
        }
        System.out.println(map.size());
    }

    //二分法查找
    public static int find(Map<Integer, Integer> map, int i){   
        int lo = 0, hi = map.size()-1;
        while (lo <= hi){
            int mid = lo+(hi-lo)/2;
            if (map.get(mid) < i) lo = mid + 1;
            else if (map.get(mid) > i) hi = mid - 1;
            else return mid;
        }
        return lo;
    }
}

5、

5.png
输入:
3 2
a = 0 - b
b = 2 - c
c = 4 - d
b - d
b - c
输出:
-2
cannot_answer

其本质是一道无向图的寻找路径题,每添加一个y=k-x等式,相当于向一副加权无向图中分别添加了y、x、yy、xx四个顶点,以及y点到xx点权重为k的无向边和x点到yy点权重为-k的无向边。而想要求y-x的值就看是否存在一条从y点到x点的路径,并求出该路径的值。

import java.util.*;

public class test5 {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        String[] str = scan.nextLine().split(" ");
        int num1 = Integer.parseInt(str[0]);
        int num2 = Integer.parseInt(str[1]);
        Graph G = new Graph();
        for (int i = 0; i < num1; i++){
            str = scan.nextLine().split(" ");
            G.addEdge(new Edge(str[0], str[4]+"2", Integer.parseInt(str[2])));
            G.addEdge(new Edge(str[0]+"2", str[4], -(Integer.parseInt(str[2]))));
        }
        String[] result = new String[num2];
        for (int i = 0; i < num2; i++){
            str = scan.nextLine().split(" ");
            String v = str[0];
            String w = str[2];
            List<String> marked = new ArrayList<>();  //维护一个标记列表,用于DFS解决路径问题
            result[i] = path(G, v, w, marked);
        }
        for (int i = 0; i < num2; i++){
            System.out.println(result[i]);
        }
    }

    // 加权无向边
    public static class Edge{
        public String v;
        public String w;
        public int weight;
        public Edge(String v, String w, int weight){
            this.v = v;
            this.w = w;
            this.weight = weight;
        }
        public int weight() {
            return weight;
        }
        public String either(){
            return v;
        }
        public String other(String vertex){
            if (vertex.equals(v)) return w;
            else return v;
        }
    }

    // 加权无向图
    public static class Graph {
        public Map<String, List<Edge>> adj = new HashMap<>();
        public void addEdge(Edge e){
            String v = e.either(), w = e.other(v);
            if (adj.get(v) == null) adj.put(v, new ArrayList<>());
            adj.get(v).add(e);
            if (adj.get(w) == null) adj.put(w, new ArrayList<>());
            adj.get(w).add(e);
        }
        public List<Edge> adj(String v){
            return adj.get(v);
        }
    }

    // 加权无向图的路径问题使用DFS
    public static String path(Graph G, String v, String target, List<String> marked){
        marked.add(v);
        for (Edge e : G.adj(v)){
            String w = e.other(v);
            if (w.equals(target)) return Integer.toString(e.weight);
            else if (marked.contains(w)) continue;
            else {
                String result = path(G, w, target, marked);
                if (result == "cannot_answer") continue;
                else return Integer.toString(e.weight + Integer.parseInt(result));
            }
        }
        return "cannot_answer";
    }
}
上一篇 下一篇

猜你喜欢

热点阅读