图像识别相关Python与Numpy学习备忘

2020-04-25  本文已影响0人  Xtuphe

Colab真是学编程的好东西,不过需要科学上网,为了方便查询我把CS231n Python Tutorial With Google Colab上的东西搬来了

基础数据类型

Numbers

x = 3
print(x, type(x))

3 <class 'int'>

print(x + 1)   # Addition
print(x - 1)   # Subtraction
print(x * 2)   # Multiplication
print(x ** 2)  # Exponentiation

4
2
6
9

x += 1
print(x)
x *= 2
print(x)

9
18

y = 2.5
print(type(y))
print(y, y + 1, y * 2, y ** 2)

<class 'float'>
2.5 3.5 5.0 6.25

⚠️ Python不支持递增(x++)或递减(x--)

Booleans

t, f = True, False
print(type(t))

<class 'bool'>
Python用英文单词来表示布尔运算符(and 表示&&, or 表示||)

print(t and f) # Logical AND;
print(t or f)  # Logical OR;
print(not t)   # Logical NOT;
print(t != f)  # Logical XOR;

False
True
False
True

Strings

hello = 'hello'   # String literals can use single quotes
world = "world"   # or double quotes; it does not matter
print(hello, len(hello))

hello 5

hw = hello + ' ' + world  # String concatenation
print(hw)

hello world

hw12 = '{} {} {}'.format(hello, world, 12)  # string formatting
print(hw12)

hello world 12

s = "hello"
print(s.capitalize())  # Capitalize a string
print(s.upper())       # Convert a string to uppercase; prints "HELLO"
print(s.rjust(7))      # Right-justify a string, padding with spaces
print(s.center(7))     # Center a string, padding with spaces
print(s.replace('l', '(ell)'))  # Replace all instances of one substring with another
print('  world '.strip())  # Strip leading and trailing whitespace

Hello
HELLO
  hello
 hello
he(ell)(ell)o
world
更多的方法在这儿 https://docs.python.org/3.7/library/stdtypes.html#string-methods

Containers

lists, dictionaries, sets. tuples

Lists

list等同于array,长度可变,可包含不同数据类型

xs = [3, 1, 2]   # Create a list
print(xs, xs[2])
print(xs[-1])     # Negative indices count from the end of the list; prints "2"

[3, 1, 2] 2
2

xs[2] = 'foo'    # Lists can contain elements of different types
print(xs)

[3, 1, 'foo']

xs.append('bar') # Add a new element to the end of the list
print(xs) 

[3, 1, 'foo', 'bar']

x = xs.pop()     # Remove and return the last element of the list
print(x, xs)

bar [3, 1, 'foo']
list更多操作在这儿:https://docs.python.org/3.7/tutorial/datastructures.html#more-on-lists

slicing

nums = list(range(5))    # range is a built-in function that creates a list of integers
print(nums)         # Prints "[0, 1, 2, 3, 4]"
print(nums[2:4])    # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print(nums[2:])     # Get a slice from index 2 to the end; prints "[2, 3, 4]"
print(nums[:2])     # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
print(nums[:])      # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]"
print(nums[:-1])    # Slice indices can be negative; prints ["0, 1, 2, 3]"
nums[2:4] = [8, 9] # Assign a new sublist to a slice
print(nums)         # Prints "[0, 1, 8, 9, 4]"

[0, 1, 2, 3, 4]
[2, 3]
[2, 3, 4]
[0, 1]
[0, 1, 2, 3, 4]
[0, 1, 2, 3]
[0, 1, 8, 9, 4]

Loops

animals = ['cat', 'dog', 'monkey']
for animal in animals:
    print(animal)

cat
dog
monkey

animals = ['cat', 'dog', 'monkey']
for idx, animal in enumerate(animals):
    print('#{}: {}'.format(idx + 1, animal))

#1: cat
#2: dog
#3: monkey

nums = [0, 1, 2, 3, 4]
squares = []
for x in nums:
    squares.append(x ** 2)
print(squares)

List comprehensions

[0, 1, 4, 9, 16]
等同于

nums = [0, 1, 2, 3, 4]
squares = [x ** 2 for x in nums]
print(squares)

[0, 1, 4, 9, 16]
也可以加条件

nums = [0, 1, 2, 3, 4]
even_squares = [x ** 2 for x in nums if x % 2 == 0]
print(even_squares)

[0, 4, 16]

Dictionaries

d = {'cat': 'cute', 'dog': 'furry'}  # Create a new dictionary with some data
print(d['cat'])       # Get an entry from a dictionary; prints "cute"
print('cat' in d)     # Check if a dictionary has a given key; prints "True"

cute
True

d['fish'] = 'wet'    # Set an entry in a dictionary
print(d['fish'])      # Prints "wet"

wet

print(d['monkey'])  # KeyError: 'monkey' not a key of d

monkey不是d的key,所以会报错

print(d.get('monkey', 'N/A'))  # Get an element with a default; prints "N/A"
print(d.get('fish', 'N/A'))    # Get an element with a default; prints "wet"

N/A
wet

del d['fish']        # Remove an element from a dictionary
print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"

N/A
更多关于dictionary:https://docs.python.org/2/library/stdtypes.html#dict
字典遍历

d = {'person': 2, 'cat': 4, 'spider': 8}
for animal, legs in d.items():
    print('A {} has {} legs'.format(animal, legs))

A person has 2 legs
A cat has 4 legs
A spider has 8 legs

Dictionary comprehension

nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square)

{0: 0, 2: 4, 4: 16}

Sets

animals = {'cat', 'dog'}
print('cat' in animals)   # Check if an element is in a set; prints "True"
print('fish' in animals)  # prints "False"

True
False

animals.add('fish')      # Add an element to a set
print('fish' in animals)
print(len(animals))       # Number of elements in a set;

True
3

animals.add('cat')       # Adding an element that is already in the set does nothing
print(len(animals))       
animals.remove('cat')    # Remove an element from a set
print(len(animals))  

3
2

set与list类似,可以遍历,但由于set是无序的,所以不能指望每次打印的顺序一样

animals = {'cat', 'dog', 'fish'}
for idx, animal in enumerate(animals):
    print('#{}: {}'.format(idx + 1, animal))

#1: dog
#2: cat
#3: fish

Set comprehensions

from math import sqrt
print({int(sqrt(x)) for x in range(30)})

{0, 1, 2, 3, 4, 5}

Tuples

tuple与list类似,不同的地方在于

d = {(x, x + 1): x for x in range(10)}  # Create a dictionary with tuple keys
t = (5, 6)       # Create a tuple
print(type(t))
print(d[t])       
print(d[(1, 2)])

<class 'tuple'>
5
1

t[0] = 1

会报错

Functions

Python用def定义函数

def sign(x):
    if x > 0:
        return 'positive'
    elif x < 0:
        return 'negative'
    else:
        return 'zero'

for x in [-1, 0, 1]:
    print(sign(x))

negative
zero
positive

常常定义函数来接收可空参数

def hello(name, loud=False):
    if loud:
        print('HELLO, {}'.format(name.upper()))
    else:
        print('Hello, {}!'.format(name))

hello('Bob')
hello('Fred', loud=True)

Hello, Bob!
HELLO, FRED

Classes

class Greeter:

    # Constructor
    def __init__(self, name):
        self.name = name  # Create an instance variable

    # Instance method
    def greet(self, loud=False):
        if loud:
          print('HELLO, {}'.format(self.name.upper()))
        else:
          print('Hello, {}!'.format(self.name))

g = Greeter('Fred')  # Construct an instance of the Greeter class
g.greet()            # Call an instance method; prints "Hello, Fred"
g.greet(loud=True)   # Call an instance method; prints "HELLO, FRED!"

Hello, Fred!
HELLO, FRED

Numpy

(Numpy的部分有点抽象,自己上手去试会好理解很多。)
Numpy是Python中科学计算的核心库,它提供了一个高性能的多维度数组对象,和处理这些对象的方法。
要是用Numpy,首先得引入Numpy包:

import numpy as np

Arrays

一个Numpy数组是一个相同类型的值的网格,并通过自然数(非负整数)构成的tuple索引。数据的维度(dimension)即为数组的(rank);数组的形状(shape)是一个tuple,此tuple的每个值是数据每个维度的大小。

a = np.array([1, 2, 3])  # Create a rank 1 array
print(type(a), a.shape, a[0], a[1], a[2])
a[0] = 5                 # Change an element of the array
print(a)                  

<class 'numpy.ndarray'> (3,) 1 2 3
[5 2 3]

b = np.array([[1,2,3],[4,5,6]])   # Create a rank 2 array
print(b)

[[1 2 3]
[4 5 6]]

print(b.shape)
print(b[0, 0], b[0, 1], b[1, 0])

(2, 3)
1 2 4

Numpy也提供生成array的方法

a = np.zeros((2,2))  # Create an array of all zeros
print(a)

[[0. 0.]
[0. 0.]]

b = np.ones((1,2))   # Create an array of all ones
print(b)

[[1. 1.]]

c = np.full((4,6), 7) # Create a constant array
print(c)

创建一个shape为(4, 6),rank为2的array
[[7 7 7 7 7 7]
[7 7 7 7 7 7]
[7 7 7 7 7 7]
[7 7 7 7 7 7]]

c = np.full((2,5,7), 9) # Create a constant array
print(c)
print(type(c))
print(c.ndim)
print(c.shape)

[[[9 9 9 9 9 9 9]
[9 9 9 9 9 9 9]
[9 9 9 9 9 9 9]
[9 9 9 9 9 9 9]
[9 9 9 9 9 9 9]]

[[9 9 9 9 9 9 9]
[9 9 9 9 9 9 9]
[9 9 9 9 9 9 9]
[9 9 9 9 9 9 9]
[9 9 9 9 9 9 9]]]
<class 'numpy.ndarray'>
3
(2, 5, 7)
创建一个rank为3,shape为(2,5,7)的array

d = np.eye(2)        # Create a 2x2 identity matrix
print(d)

[[1. 0.]
[0. 1.]]

e = np.random.random((2,2)) # Create an array filled with random values
print(e)

[[0.8690054 0.57244319]
[0.29647245 0.81464494]]

Array indexing

与Python的list类似,array可以被slice,由于array是多维度的,你必须指定每个维度的slice

import numpy as np

# 创建一个shape (3, 4)的2维array
# [[ 1  2  3  4]
#  [ 5  6  7  8]
#  [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

# 从a中切出前两行中间两列的一个shape为(2, 2)的subarray,a[0:2, 1:3]中的0可以省略
# [[2 3]
#  [6 7]]
b = a[0:2, 1:3]
print(b)

[[2 3]
[6 7]]

slice切出的数据类似于指针,所以修改slice的数据会修改原array

print(a[0, 1])
b[0, 0] = 77    # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1]) 

2
77

你也可以混合integer indexing和slice indexing,然而,这样会生成一个比原array维度低的新的array。

# 创建一个rank为2,shape为 (3, 4)的array
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print(a)

[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]

获取中间一行数据的2种方法:

row_r1 = a[1, :]    # Rank 1 view of the second row of a  
row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
row_r3 = a[[1], :]  # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)
print(row_r2, row_r2.shape)
print(row_r3, row_r3.shape)

[5 6 7 8] (4,)
[[5 6 7 8]] (1, 4)
[[5 6 7 8]] (1, 4)

# 取array的某列数据时也会有类似的区别:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)
print()
print(col_r2, col_r2.shape)

[ 2 6 10] (3,)

[[ 2]
[ 6]
[10]] (3, 1)

上一篇下一篇

猜你喜欢

热点阅读