Python cvxpy 库解决 运筹学中的背包问题、目标规划、

2023-04-12  本文已影响0人  Hamiltonian

Matlab's "linprog" function and Python CVXPY library offer optimal solutions for production.
It can calculate how to achieve maximum profit with limited resources, constraints, and requirements, or simulate the lowest-cost solution.
动态规划中的背包问题:
某工厂生产3种不同的产品,各产品重量与利润关系

种类 1 2 3
单位重量(吨) 2 3 4
单元利润 80 130 180
    x1 = cp.Variable(integer=True)
    x2 = cp.Variable(integer=True)
    x3 = cp.Variable(integer=True)
    objective = cp.Maximize(80 * x1 + 130 * x2 + 180 * x3)
    constraints = [
        2 * x1 + 3 * x2 + 4 * x3 <= 6,
        x1 >= 0,
        x2 >= 0,
        x3 >= 0,

    ]
    prob = cp.Problem(objective, constraints)
    optimal_value = prob.solve()
    print("最大利润" + str(optimal_value))
    print("产品A:" + str(x1.value))
    print("产品B:" + str(x2.value))
    print("产品C:" + str(x3.value))

题目1:https://blog.csdn.net/clear_lantern/article/details/127622092

import cvxpy as cp

def print_hi(name):
    x1 = cp.Variable()
    x2 = cp.Variable()
    x3 = cp.Variable()
    x4 = cp.Variable()
    objective = cp.Maximize(375 * x1 + 275 * x2 + 475 * x3 + 325 * x4)
    constraints = [
        2.5 * x1 + 1.5 * x2 + 2.75 * x3 + 2 * x4 <= 640,
        3.5 * x1 + 3 * x2 + 3 * x3 + 2 * x4 <= 960,
        x1 >= 0,
        x2 >= 0,
        x3 >= 0,
        x4 >= 0
    ]
    prob = cp.Problem(objective, constraints)
    optimal_value = prob.solve()
    print("最大利润" + str(optimal_value))
    print("产品A:" + str(x1.value))
    print("产品B:" + str(x2.value))
    print("产品C:" + str(x3.value))
    print("产品D:" + str(x4.value))

题目2: https://blog.csdn.net/weixin_43838785/article/details/106335542

import cvxpy as cp

def print_hi(name):
x1 = cp.Variable()
x2 = cp.Variable()
x3 = cp.Variable()

objective = cp.Maximize(3 * x1 + 5 * x2 + 4 * x3)
constraints = [
    2 * x1 + 3 * x2 <= 1500,
    0 * x1 + 2 * x2 + 4 * x3 <= 800,
    3 * x1 + 2 * x2 + 5 * x3 <= 2000,
    x1 >= 0,
    x2 >= 0,
    x3 >= 0,

]
prob = cp.Problem(objective, constraints)
optimal_value = prob.solve()
print("最大利润" + str(optimal_value))
print("产品A:" + str(x1.value))
print("产品B:" + str(x2.value))
print("产品C:" + str(x3.value))
import cvxpy as cp

def print_hi(name):
    x1 = cp.Variable()
    x2 = cp.Variable()
    x3 = cp.Variable()

    objective = cp.Minimize(2 * x1 + 3 * x2 + 1 * x3)
    constraints = [
        x1 + 4 * x2 + 2 * x3 >= 8,
        3 * x1 + 2 * x2 >= 6,
        x1 >= 0,
        x2 >= 0,
        x3 >= 0,

    ]
    prob = cp.Problem(objective, constraints)
    optimal_value = prob.solve()
    print("最小消耗" + str(optimal_value))
    print("产品A:" + str(x1.value))
    print("产品B:" + str(x2.value))
    print("产品C:" + str(x3.value))
import cvxpy as cp

def print_hi(name):
    x1 = cp.Variable()
    x2 = cp.Variable()


    objective = cp.Maximize(2 * x1 + 3 * x2)
    constraints = [
        3 * x1 + 6 * x2 <= 24,
        2 * x1 + 1 * x2 <= 10,
        x1 >= 0,
        x2 >= 0,


    ]
    prob = cp.Problem(objective, constraints)
    optimal_value = prob.solve()
    print("最大利润" + str(optimal_value))
    print("产品A:" + str(x1.value))
    print("产品B:" + str(x2.value))

题目3:https://www.doc88.com/p-9962714762805.html

import cvxpy as cp

def print_hi(name):
    x1 = cp.Variable()
    x2 = cp.Variable()


    objective = cp.Maximize(2 * x1 + 3 * x2)
    constraints = [
        3 * x1 + 6 * x2 <= 24,
        2 * x1 + 1 * x2 <= 10,
        x1 >= 0,
        x2 >= 0,


    ]
    prob = cp.Problem(objective, constraints)
    optimal_value = prob.solve()
    print("最大利润" + str(optimal_value))
    print("产品A:" + str(x1.value))
    print("产品B:" + str(x2.value))

题目4:https://qb.zuoyebang.com/xfe-question/question/5883e50dd60a35e161a23c43eb3c23b8.html

import cvxpy as cp

def print_hi(name):
    x1 = cp.Variable()
    x2 = cp.Variable()

    objective = cp.Maximize(4 * x1 + 3 * x2)
    constraints = [
        2 * x1 + x2 <= 10,
        x1 + x2 <= 8,
        x2 <= 7,
        x1 >= 0,
        x2 >= 0,
    ]
    prob = cp.Problem(objective, constraints)
    optimal_value = prob.solve()
    print("最大利润" + str(optimal_value))
    print("产品A:" + str(x1.value))
    print("产品B:" + str(x2.value))

上一篇 下一篇

猜你喜欢

热点阅读