ggplot2绘图

ggplot分组散点图-坐标轴截断-添加四分位图-显著性检验

2022-06-10  本文已影响0人  KS科研分享与服务

近日在《The new england journal o f medicine》杂志看到一篇文章的图,如下,这种图应该是用GraphPad prism做的,图的特点是散点统计图,仔细观察中间还展示了平均值和四分位数,坐标轴也是截断的。这里我们使用R来做一下。

image.png

(Reference:A Novel Circulating MicroRNA for the Detection of Acute Myocarditis)

示例数据及注释代码已上传群文件!

首先读入数据,包含表达值和分组:


setwd("E:/生物信息学/ggplot坐标轴截断")
A <- read.csv("Exp.csv", header = T)
library(ggplot2)
library(forcats)
library(ggpubr)
A$GeneSymbol <- as.factor(A$GeneSymbol)
A$GeneSymbol <- fct_inorder(A$GeneSymbol)

计算四分位数:

B <- A %>% 
  group_by(GeneSymbol) %>% 
  mutate(upper =  quantile(S100A12, 0.75),
         lower = quantile(S100A12, 0.25),
         mean = mean(S100A12),
         median = median(S100A12))

设置需要比较的分组:


my_comparisons1 <- list(c("Asymptomatic", "Mild")) 
my_comparisons2 <- list(c("Asymptomatic", "Severe"))
my_comparisons3 <- list(c("Asymptomatic", "Critical"))

ggplot作图:


p <- ggplot(A, aes(GeneSymbol, S100A12, 
              shape=GeneSymbol, fill=GeneSymbol))+
  geom_jitter(size=3, position = position_jitter(0.2))+
  scale_shape_manual(values = c(21,24,25,22))+
  scale_fill_manual(values=c("grey",
                                 "#0073B5",
                                 "#C9543B",
                                 "#E59F3F"))+
  geom_errorbar(data=B, aes(ymin = lower, 
                            ymax = upper),width = 0.2,size=0.5)+
  stat_summary(fun = "mean",
               geom = "crossbar",
               mapping = aes(ymin=..y..,ymax=..y..),
               width=0.4,
               size=0.3)+
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        axis.line=element_line(colour="black"),
        axis.title.x = element_blank(),
        axis.title.y = element_blank(),
        axis.text.x = element_text(size = 14,angle = 45,
                                   vjust = 1,hjust = 1, 
                                   color = 'black',face="bold"),
        axis.text.y = element_text(size = 12, color = 'black'),
        plot.title = element_text(hjust = 0.5,size=15,face="bold"),
        legend.position = "NA")+
  ggtitle("S100A2")+
  stat_compare_means(method="t.test",hide.ns = F,
                     comparisons =c(my_comparisons1,my_comparisons2,my_comparisons3),
                     label="p.signif",
                     bracket.size=0.8,
                     size=6)
image.png

坐标轴截断,有很多函数可以实现,这里演示两种:


install.packages("gg.gap")
library(gg.gap)
gg.gap(plot=p,
       segments=c(5,10),
       ylim=c(0,850),
       tick_width = c(1,100))

还有ggbreak:

install.packages("ggbreak")
library(ggbreak)

p+scale_y_cut(breaks = 5,
              which = c(1,3),
              scales = c(3,0.5),
              space = 0.1)
image.png

总体可以,像文章中的要做很多数据的时候,可以使用循环作图。当然了,一般情况还是建议用prism做就可以了,因为还是比较方便!

看完了。觉得分享有用的话,帮忙点个赞,分享一下再走呗!

更多精彩请关注我的公众号《KS科研分享与服务》!

上一篇下一篇

猜你喜欢

热点阅读