互信息=公平+明确

2022-02-08  本文已影响0人  WilliamY

\mathbf {x}表示输入数据,c表示类别标签,\mathbf { y} =p ( c \mid \mathbf { x } )表示模型输出,输入与其类别间的互信息为:
\begin{aligned} \mathcal { I } ( c ; \mathbf { x } ) & = \iint d c d \mathbf { x } p ( c , \mathbf { x } ) \log \frac { p ( c , \mathbf { x } ) } { p ( c ) p ( \mathbf { x } ) } \\ & = \int d \mathbf { x } p ( \mathbf { x } ) \int d c p ( c \mid \mathbf { x } ) \log \frac { p ( c \mid \mathbf { x } ) } { p ( c ) } \\ & = \int d \mathbf { x } p ( \mathbf { x } ) \int d c p ( c \mid \mathbf { x } ) \log \frac { p ( c \mid \mathbf { x } ) } { \int d \mathbf { x } p ( \mathbf { x } ) p ( c \mid \mathbf { x } ) } \end{aligned}
上面的公式分项解释如下:

于是上式在训练时可表示为:
\begin{aligned} \mathcal {I } ( c ; \mathbf { x } ) &= \frac { 1 } { N _ { t s } } \sum _ { t s } \sum _ { i = 1 } ^ { N _ { c } } y _ { i } \log \frac { y _ { i } } { \overline{y_ { i }} } \\ &= \sum _ { i = 1 } ^ { N _ { c } }( -\overline{y _{ i } } \log \overline{ y } _ { i })+\frac { 1 } { N _ { t s } } \sum _ { t s } \sum _ { i = 1 } ^ { N _ { c } } y _ { i } \log y _ { i } \newline &= \mathcal { H } ( \overline { \mathbf { y } } ) - \overline { \mathcal { H } ( \mathbf { y } ) } \end{aligned}

参考文献:
Bridle J, Heading A, MacKay D. Unsupervised classifiers, mutual information and'Phantom targets[J]. Advances in neural information processing systems, 1991, 4.

上一篇下一篇

猜你喜欢

热点阅读