【java并发编程】全面理解Future模式的原理和使用(Fut

2018-11-28  本文已影响0人  DoubleBin

一、前言

    通常,java中创建多线程的两种方式:

    考虑到一些逻辑需要一定的先后顺序,如果直接用这两种方式都会有共同的缺点:

    由此,我们想到了多线程开发中常见的Future模式。开发中经常有一些操作可能比较耗时,但又不想阻塞式的等待,这时可以先执行一些其它操作,等其它操作完成后再去获取耗时操作的结果,这就是Future模式的描述。对应于生活中例子比比皆是:比如,打开电饭煲烧米饭后继续炒菜,等炒菜完了去看下米饭有没有煲熟,过程中无需死等电饭煲把饭煲熟,只有在炒完菜后这个时间点,我们才尝试去看电饭煲煲饭的结果,这就是Future模式的一个生活原型。
    java从1.5开始,在并发包中提供了Future模式的设计,我们这要结合Callable、Future/FutureTask就能很容易的使用Future模式。

二、Future模式的一个简单示例

     我们来看一个简单示例:

    public static void main(String[] args) throws InterruptedException, ExecutionException
    {
        
        ExecutorService executor = Executors.newCachedThreadPool();
        Future<Integer> future = executor.submit(new Callable<Integer>(){

            @Override
            public Integer call()
                throws Exception
            {
                int total = 0;
                for(int i = 5001; i<=10000; i++){
                    total += i;
                }
                return total;
            }
            
        });
        
        System.out.print("Submit future task now...");
        executor.shutdown();
        
        int total = 0;
        for(int i = 1; i<=5000; i++){
            total += i;
        }
        
        total += future.get();
        
        System.out.print("1+2+...+10000 = " + total);
    }

示例中计算了1~10000且步长为1的等比数列之和,将数列拆均分成两部分分别求和,最后进行累计。Future模式通常需要配合ExecutorService和Callable一起使用,代码中采用ExecutorService的submit方法提交Callable线程,在主线程任务完成后获取Callable线程的结果。

三、源码分析

  1.     
    我们先直接看下Future类型的源码:
public interface Future<V> {

    boolean cancel(boolean mayInterruptIfRunning);

    boolean isCancelled();
  
    boolean isDone();

    V get() throws InterruptedException, ExecutionException;

    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

    
Future接口的5个方法含义如下:

  1.     
    Future模式通常需要配合ExecutorService和Callable一起使用,通过ExecutorService的submit方法提交Callable线程。我们知道,execute()方法在Executor接口中定义,而submit()方法在ExecutorService接口中定义,ExecutorService接口继承Executor接口:
    public interface Executor {
        void execute(Runnable command);
    }
    
    public interface ExecutorService extends Executor {
        ...
        <T> Future<T> submit(Callable<T> task);
            
        <T> Future<T> submit(Runnable task, T result);
            
        Future<?> submit(Runnable task);
        ...
    }
  1.     
    ExecutorService只是一个接口,我们以上一节的newCachedThreadPool为例,看下它的源码:
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
  1.     
    上面结果返回的是一个ThreadPoolExecutor,它是ExecutorService的一个子类,看ThreadPoolExecutor源码可以发现,ThreadPoolExecutor没有实现submit方法,它的submit方法由其直接父类AbstractExecutorService实现:
    ...
    public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }
    ...
    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }
    ...    
    public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task, result);
        execute(ftask);
        return ftask;
    }
    ...
  1.     
    在上面三个submit方法中,无论是Callable接口还是Runnable接口,均是转化成了RunnableFuture实例,看下RunnableFuture的实现:
public interface RunnableFuture<V> extends Runnable, Future<V> {
    /**
     * Sets this Future to the result of its computation
     * unless it has been cancelled.
     */
    void run();
}
  1.     
    RunnableFuture接口同时继承了Runnable接口和Future接口。再看下上面讲Callable或Runnable转化成RunnableFuture实例的实现:
    ...
    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
        return new FutureTask<T>(callable);
    }
    
    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return new FutureTask<T>(runnable, value);
    }
    ...
  1.     
    通过两个newTaskFor方法分别将Callable和Runnable实例转化成FutureTask实例,FutureTask是RunnableFuture的实现,上述源码中涉及FutureTask的两种构造函数:
    ...
    private Callable<V> callable;
    private volatile int state;
    private static final int NEW          = 0;
    ...
    public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }
    ...
    public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       // ensure visibility of callable
    }
    ...
  1.     
    对于Callable实例,直接将入参Callable对象赋值给this.callable属性,并设置this.state属性为NEW; 而对于Funnable实例,需要通过Executors类的callable(runnable, result)方法转化成Callable实例:
    public static <T> Callable<T> callable(Runnable task, T result) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
    }
  1.     
    Executors类的callable(runnable, result)方法实际生成了一个RunnableAdapter对象,看下其源码:
    static final class RunnableAdapter<T> implements Callable<T> {
        final Runnable task;
        final T result;
        RunnableAdapter(Runnable task, T result) {
            this.task = task;
            this.result = result;
        }
        public T call() {
            task.run();
            return result;
        }
    }

    
显而易见,RunnableAdapter类实现了Callable接口的call()方法,内部调用了Runnable实例的run()方法,并返回预先传过来的result值。

  1.     
    回过头来看下,FutureTask类实现了RunnableFuture接口,进而实现了Runnable接口和Future接口的统一,那么它是如何实现Runnable接口的run()方法的呢?看下其源码:
    public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }
    
    ...
    
    protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }
    
    ...
    
    protected void setException(Throwable t) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = t;
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
            finishCompletion();
        }
    }

    
可以看到FutureTask的run()方法内部调用了Runnable实例的call()方法,并且如果运行成功,将call()方法的返回值赋值给outcome,否则将异常赋值给outcome。
    
这样也就容易理解ExecutorService的submit方法实现中是如何调用execute(Runnable command)方法的了,它将Runnable或者Callable实例统一转换成了RunnableFuture实例,由于RunnableFuture继承了Runnable接口,所以线程池可以通过execute(Runnable command)方法来进行处理。

  1.     回过来看下FutureTask类的get()方法实现:
    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        return report(s);
    }
    
    ...
    
    private V report(int s) throws ExecutionException {
        Object x = outcome;
        if (s == NORMAL)
            return (V)x;
        if (s >= CANCELLED)
            throw new CancellationException();
        throw new ExecutionException((Throwable)x);
    }
    
    ...
    
        private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);
        }
    }
    private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break;
            }
        }

        done();

        callable = null;        // to reduce footprint
    }

四、总结

    通过上述举例和源码分析我们理解了java中Future模式的原理和使用,Future模式对于一些耗时操作(比如网络请求等)的性能提升还是比较有用的,实际开发中可以灵活运用。

上一篇下一篇

猜你喜欢

热点阅读