关于CMS垃圾收集算法的一些疑惑
简书 占小狼
转载请注明原创出处,谢谢!
对于CMS垃圾收集算法,一直有一些疑惑:
1、cms gc 和 full gc 有什么区别 ?
2、cms gc 和 full gc 如何触发的 ?
3、什么场景下会发生 concurrent model failure ?
4、full gc 每次都会进行compact么?
5、...(如果有疑惑继续更新)
虽然CMS算法已经被遗弃了,但考虑到目前还有很大一部分应用跑在该算法之下,是时候读一遍源码来加深理解了,不过最近得了一种一看源码就头疼的病,所以这部分源码断断续续看了好几天,然后趁这个机会好好的梳理一下,如果期间存在问题,欢迎指出。
cms gc 状态
当触发 cms gc 对老年代进行垃圾收集时,算法中会使用_collectorState
变量记录执行状态,整个周期分成以下几个状态:
- Idling:一次 cms gc 生命周期的初始化状态。
- InitialMarking:根据 gc roots,标记出直接可达的活跃对象,这个过程需要stw的。
- Marking:根据 InitialMarking 阶段标记出的活跃对象,并发迭代遍历所有的活跃对象,这个过程可以和用户线程并发执行。
- Precleaning:并发预清理。
- AbortablePreclean:因为某些原因终止预清理。
- FinalMarking:由于marking阶段是和用户线程并发执行的,该过程中可能有用户线程修改某些活跃对象的字段,指向了一个非标记过的对象,在这个阶段需要重新标记出这些遗漏的对象,防止在下一阶段被清理掉,这个过程也是需要stw的。
- Sweeping:并发清理掉未标记的对象。
- Resizing:如果有需要,重新调整堆大小。
- Resetting:重置数据,为下一次的 cms gc 做准备。
cms gc 和 full gc 的区别
CMS算法中实现了cms gc 和 full gc,姑且这么认为吧,算法实现都位于文件concurrentMarkSweepGeneration.cpp
中。
cms gc 通过一个后台线程触发,触发机制是默认每隔2秒判断一下当前老年代的内存使用率是否达到阈值,当然具体的触发条件没有这么简单,如果是则触发一次cms gc,在该过程中只会标记出存活对象,然后清除死亡对象,期间会产生碎片空间。
full gc 是通过 vm thread 执行的,整个过程是 stop-the-world,在该过程中会判断当前 gc 是否需要进行compact,即把存活对象移动到内存的一端,可以有效的消除cms gc产生的碎片空间。
cms gc 如何触发
对于 cms gc 来说,触发条件很简单,实现位于 ConcurrentMarkSweepThread
类中,相当于Java 中的Thread,该线程随着堆一起初始化,在该类的 run 方法中有这么一段逻辑:
while (!_should_terminate) {
sleepBeforeNextCycle();
if (_should_terminate) break;
GCCause::Cause cause = _collector->_full_gc_requested ?
_collector->_full_gc_cause : GCCause::_cms_concurrent_mark;
_collector->collect_in_background(false, cause);
}
sleepBeforeNextCycle()
保证了最晚每 2 秒(-XX:CMSWaitDuration
)进行一次判断,实现如下:
void ConcurrentMarkSweepThread::sleepBeforeNextCycle() {
while (!_should_terminate) {
if (CMSIncrementalMode) {
icms_wait();
return;
} else {
// Wait until the next synchronous GC, a concurrent full gc
// request or a timeout, whichever is earlier.
wait_on_cms_lock(CMSWaitDuration);
}
// Check if we should start a CMS collection cycle
if (_collector->shouldConcurrentCollect()) {
return;
}
// .. collection criterion not yet met, let's go back
// and wait some more
}
}
其中shouldConcurrentCollect()
方法决定了是否可以触发本次 cms gc,分为以下几种情况:
1、如果_full_gc_requested
为真,说明有明确的需求要进行gc,比如调用System.gc()
;
2、CMS 默认采用 jvm 运行时的统计数据判断是否需要触发 cms gc,如果需要根据 CMSInitiatingOccupancyFraction 的值进行判断,需要设置参数-XX:+UseCMSInitiatingOccupancyOnly
3、如果开启了UseCMSInitiatingOccupancyOnly
参数,判断当前老年代使用率是否大于阈值,则触发 cms gc,该阈值可以通过参数-XX:CMSInitiatingOccupancyFraction
进行设置,如果没有设置,默认为92%;
4、如果之前的 ygc 失败过,或则下次新生代执行 ygc 可能失败,这两种情况下都需要触发 cms gc;
5、CMS 默认不会对永久代进行垃圾收集,如果希望对永久代进行垃圾收集,需要设置参数-XX:+CMSClassUnloadingEnabled
,如果开启了CMSClassUnloadingEnabled
,根据永久带的内存使用率判断是否触发 cms gc;
6、...还有一些其它情况
如果有上述几种情况,说明需要执行一次 cms gc,通过调用_collector->collect_in_background(false, cause)
进行触发,注意这个方法名中的in_background
full gc 如何触发
触发 full gc 的主要原因是在eden区为对象或TLAB分配内存失败,导致一次 ygc,在 GenCollectorPolicy
类的satisfy_failed_allocation()
方法中有这么一段逻辑:
if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
// Do an incremental collection.
gch->do_collection(false /* full */,
false /* clear_all_soft_refs */,
size /* size */,
is_tlab /* is_tlab */,
number_of_generations() - 1 /* max_level */);
} else {
if (Verbose && PrintGCDetails) {
gclog_or_tty->print(" :: Trying full because partial may fail :: ");
}
// Try a full collection; see delta for bug id 6266275
// for the original code and why this has been simplified
// with from-space allocation criteria modified and
// such allocation moved out of the safepoint path.
gch->do_collection(true /* full */,
false /* clear_all_soft_refs */,
size /* size */,
is_tlab /* is_tlab */,
number_of_generations() - 1 /* max_level */);
}
该方法是由 vm thread 执行的,整个过程都是 stop-the-world,如果当前incremental_collection_will_fail
方法返回 false,则会放弃本次的 ygc,直接触发一次 full gc,incremental_collection_will_fail
实现如下:
bool incremental_collection_will_fail(bool consult_young) {
// Assumes a 2-generation system; the first disjunct remembers if an
// incremental collection failed, even when we thought (second disjunct)
// that it would not.
assert(heap()->collector_policy()->is_two_generation_policy(),
"the following definition may not be suitable for an n(>2)-generation system");
return incremental_collection_failed() ||
(consult_young && !get_gen(0)->collection_attempt_is_safe());
}
其中参数 consult_young 为 false
,如果incremental_collection_failed()
返回 true,会导致执行很慢很慢很慢的full gc,如果上一次 ygc 过程中发生 promotion failure 时,会设置 _incremental_collection_failed
为 true,即方法incremental_collection_failed()
返回 true,相当于触发了 full gc。
其实不管执行 ygc 还是 full gc,都是执行 GenCollectedHeap 的do_collection()
方法,最终执行CMS算法的 full gc 实现位于CMSCollector::collect()
方法中,当然了,执行 full gc 的逻辑和 cms gc 不是同一条路径,只是实现在同一个文件不同方法中,而且 full gc 是单线程的,完全 stw,而cms gc 是多线程,部分过程是stw的。
还有一种情况是,当发生ygc之后,还是没有足够的内存进行分配,这时会继续触发 full gc,实现如下:
// If we reach this point, we're really out of memory. Try every trick
// we can to reclaim memory. Force collection of soft references. Force
// a complete compaction of the heap. Any additional methods for finding
// free memory should be here, especially if they are expensive. If this
// attempt fails, an OOM exception will be thrown.
{
IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
gch->do_collection(true /* full */,
true /* clear_all_soft_refs */,
size /* size */,
is_tlab /* is_tlab */,
number_of_generations() - 1 /* max_level */);
}
concurrent model failure?
在CMS中,full gc 也叫 The foreground collector
,对应的 cms gc 叫 The background collector
,在真正执行 full gc 之前会判断一下 cms gc 的执行状态,如果 cms gc 正处于执行状态,调用report_concurrent_mode_interruption()
方法,通知事件 concurrent mode failure
,具体实现如下:
CollectorState first_state = _collectorState;
if (first_state > Idling) {
report_concurrent_mode_interruption();
}
//
void CMSCollector::report_concurrent_mode_interruption() {
if (is_external_interruption()) {
if (PrintGCDetails) {
gclog_or_tty->print(" (concurrent mode interrupted)");
}
} else {
if (PrintGCDetails) {
gclog_or_tty->print(" (concurrent mode failure)");
}
_gc_tracer_cm->report_concurrent_mode_failure();
}
}
这里可以发现是 full gc 导致了concurrent mode failure
,而不是因为concurrent mode failure
错误导致触发 full gc,真正触发 full gc 的原因可能是 ygc 时发生的promotion failure
。
其实这里还有concurrent mode interrupted
,这是由于外部因素触发了 full gc,比如执行了System.gc()
,导致了这个原因。
full gc中的compact
每次触发 full gc,会根据should_compact
标识进行判断是否需要执行 compact ,判断实现如下:
*should_compact =
UseCMSCompactAtFullCollection &&
((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
GCCause::is_user_requested_gc(gch->gc_cause()) ||
gch->incremental_collection_will_fail(true /* consult_young */));
UseCMSCompactAtFullCollection
默认开启,但是否要进行 compact,还得看后面的条件:
1、最近一次cms gc 以来发生 full gc 的次数_full_gcs_since_conc_gc
(这个值每次执行完 cms gc 的sweeping 阶段就会设置为0)达到阈值CMSFullGCsBeforeCompaction
。(但是阈值默认为0,哪里有设置它的地方,不会每次 full gc 都是compact吧?)
2、用户强制执行了gc,如System.gc()
。
3、上一次 ygc 已经失败(发生了promotion failure),或预测下一次 ygc 不会成功。
如果上述条件都不满足,是否就一直不进行 compact,这样碎片问题就得不到缓解了,幸好还有补救的机会,实现如下:
if (clear_all_soft_refs && !*should_compact) {
// We are about to do a last ditch collection attempt
// so it would normally make sense to do a compaction
// to reclaim as much space as possible.
if (CMSCompactWhenClearAllSoftRefs) {
// Default: The rationale is that in this case either
// we are past the final marking phase, in which case
// we'd have to start over, or so little has been done
// that there's little point in saving that work. Compaction
// appears to be the sensible choice in either case.
*should_compact = true;
} else {
// We have been asked to clear all soft refs, but not to
// compact. Make sure that we aren't past the final checkpoint
// phase, for that is where we process soft refs. If we are already
// past that phase, we'll need to redo the refs discovery phase and
// if necessary clear soft refs that weren't previously
// cleared. We do so by remembering the phase in which
// we came in, and if we are past the refs processing
// phase, we'll choose to just redo the mark-sweep
// collection from scratch.
if (_collectorState > FinalMarking) {
// We are past the refs processing phase;
// start over and do a fresh synchronous CMS cycle
_collectorState = Resetting; // skip to reset to start new cycle
reset(false /* == !asynch */);
*should_start_over = true;
} // else we can continue a possibly ongoing current cycle
}
普通的 full gc,参数clear_all_soft_refs
为 false,不会清理软引用,如果在执行完 full gc,空间还是不足的话,会执行一次彻底的 full gc,尝试清理所有的软引用,想方设法的收集可用内存,这种情况clear_all_soft_refs
为 true,而且CMSCompactWhenClearAllSoftRefs
默认为 true,在垃圾收集完可以执行一次compact,如果真的走到了这一步,该好好的查查代码了,因为这次 gc 的暂停时间已经很长很长很长了。
根据对should_compact
参数的判断,执行不同的算法进行 full gc,实现如下:
if (should_compact) {
// If the collection is being acquired from the background
// collector, there may be references on the discovered
// references lists that have NULL referents (being those
// that were concurrently cleared by a mutator) or
// that are no longer active (having been enqueued concurrently
// by the mutator).
// Scrub the list of those references because Mark-Sweep-Compact
// code assumes referents are not NULL and that all discovered
// Reference objects are active.
ref_processor()->clean_up_discovered_references();
if (first_state > Idling) {
save_heap_summary();
}
do_compaction_work(clear_all_soft_refs);
// Has the GC time limit been exceeded?
DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
size_t max_eden_size = young_gen->max_capacity() -
young_gen->to()->capacity() -
young_gen->from()->capacity();
GenCollectedHeap* gch = GenCollectedHeap::heap();
GCCause::Cause gc_cause = gch->gc_cause();
size_policy()->check_gc_overhead_limit(_young_gen->used(),
young_gen->eden()->used(),
_cmsGen->max_capacity(),
max_eden_size,
full,
gc_cause,
gch->collector_policy());
} else {
do_mark_sweep_work(clear_all_soft_refs, first_state, should_start_over);
}
个人公众号