Hudi Timeline简析

2022-08-22  本文已影响0人  LittleMagic

前言

Long time no see(鞠躬

最近终于开始尝试推广Hudi在部门内部的应用,作为流批一体计划的最后一块拼图,顺便复活许久未更的博客,希望今后至少能保持周更的节奏吧。

在Hudi官方文档的开头列举了四大核心概念,分别是:

本文就来简要地谈谈Timeline。

Timeline作用与结构

官网关于Timeline的页面洋洋洒洒介绍了很多,但是少了笔者认为最关键的、本质的概念:

Timeline就是Hudi的事务日志。

读者可以回想一下MySQL中的Redo/Undo Log、Kudu中的Redo/Undo File(可参见很久之前写的解析)。Timeline在Hudi中扮演的角色和它们基本相同(尽管Hudi并不是一个数据库系统),也就是说,Hudi依靠Timeline提供快照隔离(SI)的事务语义,并使得增量查询、Time-travel等特性成为可能。

每张Hudi表都有一条Timeline,由许多Instant组成,其中维护了各个时间点在该表上进行的操作。每个Instant又包含以下3个主要field。

Timeline和Instant的详细图示如下。

关于各个Action和State值的含义,可直接参考文档,这里不再赘述。

Timeline以文件序列的形式存储,其路径位于/path/to/table/.hoodie目录,每个文件的命名方式是[time].[action].[state](处于completed状态的Instant没有state后缀),例如:20220822181448272.deltacommit.inflight。不同类型的Action对应的文件格式由不同的Avro Schema定义,以一个已经完成的deltacommit操作为例,它对应的Instant数据节选如下:

{
      "fileId" : "6e0ef835-2474-4182-b085-e64994788729",
      "path" : "2022-08-22/.6e0ef835-2474-4182-b085-e64994788729_20220822181218028.log.1_3-4-0",
      "prevCommit" : "20220822181218028",
      "numWrites" : 179,
      "numDeletes" : 0,
      "numUpdateWrites" : 179,
      "numInserts" : 0,
      "totalWriteBytes" : 60666,
      "totalWriteErrors" : 0,
      "tempPath" : null,
      "partitionPath" : "2022-08-22",
      "totalLogRecords" : 0,
      "totalLogFilesCompacted" : 0,
      "totalLogSizeCompacted" : 0,
      "totalUpdatedRecordsCompacted" : 0,
      "totalLogBlocks" : 0,
      "totalCorruptLogBlock" : 0,
      "totalRollbackBlocks" : 0,
      "fileSizeInBytes" : 199309,
      "minEventTime" : null,
      "maxEventTime" : null,
      "logVersion" : 1,
      "logOffset" : 0,
      "baseFile" : "6e0ef835-2474-4182-b085-e64994788729_0-4-0_20220822181218028.parquet",
      "logFiles" : [ ".6e0ef835-2474-4182-b085-e64994788729_20220822181218028.log.1_3-4-0" ],
      "recordsStats" : {
        "val" : null,
        "present" : false
      },
      "columnStats" : {
        "val" : null,
        "present" : false
      }
}

Timeline实现

Timeline的类层次体系如下图所示。

HoodieTimeline接口定义了所有合法的Action和State的组合(也就是Instant文件的扩展名组合),以及Instant的获取、过滤和文件名拼接等规范,主要的实现则位于HoodieDefaultTimeline类。所有的Instant维护在List<HoodieInstant>容器中。

举个例子,Flink-Hudi Sink配备了生成Inline Compaction计划的算子CompactionPlanOperator,在每个Checkpoint完毕时负责调度。它需要在Timeline中寻找第一个pending的Compaction操作,就会用到HoodieDefaultTimeline提供的对应方法:

// CompactionPlanOperator
  private void scheduleCompaction(HoodieFlinkTable<?> table, long checkpointId) throws IOException {
    // the first instant takes the highest priority.
    Option<HoodieInstant> firstRequested = table.getActiveTimeline().filterPendingCompactionTimeline()
        .filter(instant -> instant.getState() == HoodieInstant.State.REQUESTED).firstInstant();
    if (!firstRequested.isPresent()) {
      // do nothing.
      LOG.info("No compaction plan for checkpoint " + checkpointId);
      return;
    }
    // ......
  }
// HoodieDefaultTimeline
  @Override
  public HoodieTimeline filterPendingCompactionTimeline() {
    return new HoodieDefaultTimeline(
        instants.stream().filter(s -> s.getAction().equals(HoodieTimeline.COMPACTION_ACTION) && !s.isCompleted()), details);
  }

下面再来看看HoodieDefaultTimeline的两个实现。

HoodieActiveTimeline

顾名思义,HoodieActiveTimeline维护当前活动的Timeline,它的主要作用是读写不同Action、不同State对应的Instant文件,所以大部分操作都是直接对文件操作。以requested状态到inflight状态的转换为例,代码比较易懂,其他操作都类似:

  public void transitionRequestedToInflight(HoodieInstant requested, Option<byte[]> content,
      boolean allowRedundantTransitions) {
    HoodieInstant inflight = new HoodieInstant(State.INFLIGHT, requested.getAction(), requested.getTimestamp());
    ValidationUtils.checkArgument(requested.isRequested(), "Instant " + requested + " in wrong state");
    transitionState(requested, inflight, content, allowRedundantTransitions);
  }

  private void transitionState(HoodieInstant fromInstant, HoodieInstant toInstant, Option<byte[]> data,
       boolean allowRedundantTransitions) {
    ValidationUtils.checkArgument(fromInstant.getTimestamp().equals(toInstant.getTimestamp()));
    try {
      if (metaClient.getTimelineLayoutVersion().isNullVersion()) {
        // Re-create the .inflight file by opening a new file and write the commit metadata in
        createFileInMetaPath(fromInstant.getFileName(), data, allowRedundantTransitions);
        Path fromInstantPath = getInstantFileNamePath(fromInstant.getFileName());
        Path toInstantPath = getInstantFileNamePath(toInstant.getFileName());
        boolean success = metaClient.getFs().rename(fromInstantPath, toInstantPath);
        if (!success) {
          throw new HoodieIOException("Could not rename " + fromInstantPath + " to " + toInstantPath);
        }
      } else {
        // Ensures old state exists in timeline
        LOG.info("Checking for file exists ?" + getInstantFileNamePath(fromInstant.getFileName()));
        ValidationUtils.checkArgument(metaClient.getFs().exists(getInstantFileNamePath(fromInstant.getFileName())));
        // Use Write Once to create Target File
        if (allowRedundantTransitions) {
          FileIOUtils.createFileInPath(metaClient.getFs(), getInstantFileNamePath(toInstant.getFileName()), data);
        } else {
          createImmutableFileInPath(getInstantFileNamePath(toInstant.getFileName()), data);
        }
        LOG.info("Create new file for toInstant ?" + getInstantFileNamePath(toInstant.getFileName()));
      }
    } catch (IOException e) {
      throw new HoodieIOException("Could not complete " + fromInstant, e);
    }
  }

除此之外,HoodieActiveTimeline还有一个非常重要的功能是生成新的Instant时间戳:

  public static String createNewInstantTime(long milliseconds) {
    return lastInstantTime.updateAndGet((oldVal) -> {
      String newCommitTime;
      do {
        if (commitTimeZone.equals(HoodieTimelineTimeZone.UTC)) {
          LocalDateTime now = LocalDateTime.now(ZoneOffset.UTC);
          newCommitTime = now.format(MILLIS_INSTANT_TIME_FORMATTER);
        } else {
          Date d = new Date(System.currentTimeMillis() + milliseconds);
          newCommitTime = MILLIS_INSTANT_TIME_FORMATTER.format(convertDateToTemporalAccessor(d));
        }
      } while (HoodieTimeline.compareTimestamps(newCommitTime, HoodieActiveTimeline.LESSER_THAN_OR_EQUALS, oldVal));
      return newCommitTime;
    });
  }

注意最近一个Instant的时间以AtomicReference<String>来维护,这样就可以通过CAS操作(updateAndGet())来保证Instant的时间戳单调递增。

活动Timeline中可维护的Commit数目的上下界可由参数hoodie.keep.max.commitshoodie.keep.min.commits来指定,默认值分别为30和20。

HoodieArchivedTimeline

随着Hudi表不断写入,Instant会逐渐增多,为了降低活动Timeline上的文件压力,需要对比较久远的Instant进行归档,并将这些Instant从活动Timeline移除。这个操作一般是默认执行的(hoodie.archive.automatic默认为true ),归档后的Instant就会维护在HoodieArchivedTimeline中,位于/path/to/table/.hoodie/archived目录下。触发自动归档的Commit数上下界则由参数archive.max_commitsarchive.min_commits指定,默认值分别为50和40。

HoodieArchivedTimeline进行归档的逻辑并不在它内部,而位于HoodieTimelineArchiver中,看官可自行参考其源码。为了进一步减少小文件的影响,在归档的同时还可以进行小文件合并,与合并操作相关的参数有:

The End

晚安晚安。

上一篇 下一篇

猜你喜欢

热点阅读