单细胞文献解读聚类

单细胞转录组数据分析课件||5. scRNA-seq data

2019-10-24  本文已影响0人  周运来就是我

本文主要介绍了单细胞数据分析中的多样本分析,这对于单细胞数据挖掘是一个挑战,以后也会变成一种常态。










kBET
A test metric for assessing single-cell RNA-seq batch correction

Here we present a user-friendly, robust and sensitive k-nearest-neighbor batch-effect test (kBET; https://github.com/theislab/kBET) for quantification of batch effects. We used kBET to assess commonly used batch-regression and normalization approaches, and to quantify the extent to which they remove batch effects while preserving biological variability. We also demonstrate the application of kBET to data from peripheral blood mononuclear cells (PBMCs) from healthy donors to distinguish cell-type-specific inter-individual variability from changes in relative proportions of cell populations. This has important implications for future data-integration efforts, central to projects such as the Human Cell Atlas.



Multiplexed droplet single-cell RNA-sequencing using natural genetic variation



url

This lecture by Ahmed Mahfouz (Leiden Computational Biology Center, LUMC, Netherlands) is part of the course "Single cell RNA-seq data analysis with R" (27.-29.5.2019). Please see https://www.csc.fi/web/training/-/scr... for the full course description and all the materials.

上一篇下一篇

猜你喜欢

热点阅读