java开发进阶程序员首页投稿(暂停使用,暂停投稿)

内容有序的集合之 ProrityQueue

2017-09-30  本文已影响30人  Frank_Kivi

大家可能都知道,List是有序的,Set是无序的。其中ArrayList是使用数组实现的,ArrayList实现了RandomAccess使其可以根据位置快速访问。HashSet的实现原理大家可以参阅 Set去重原理

HashSet是可以去重的。
大家可能有这样的需求,一堆元素放入集合之后,我们想要让元素本身有顺序,比如元素进入的时候是以63279,我们想要集合能够变成23679,这样方便我们使用,为了能把两种有序区分开来 ,我们把ArrayList叫做访问有序,而ProrityQueue是内容有序。当然数组有Arrays.sort(),List有Collecctions.sort()。还有其它方法吗?今天就给大家介绍ProrityQueue。

public class PriorityQueue<E> extends AbstractQueue<E>
    implements java.io.Serializable {

    private static final long serialVersionUID = -7720805057305804111L;

    private static final int DEFAULT_INITIAL_CAPACITY = 11;
    <!--真正存储数据的数组-->
    transient Object[] queue; // non-private to simplify nested class access
    <!--数据的长度-->
    private int size = 0;

    <!--比较器-->
    private final Comparator<? super E> comparator;

    /**
     * The number of times this priority queue has been
     * <i>structurally modified</i>.  See AbstractList for gory details.
     */
    transient int modCount = 0; // non-private to simplify nested class access

    public PriorityQueue() {
        this(DEFAULT_INITIAL_CAPACITY, null);
    }

    public PriorityQueue(int initialCapacity) {
        this(initialCapacity, null);
    }

    public PriorityQueue(Comparator<? super E> comparator) {
        this(DEFAULT_INITIAL_CAPACITY, comparator);
    }
    <!--最终被调用的构造-->
    public PriorityQueue(int initialCapacity,
                         Comparator<? super E> comparator) {
        // Note: This restriction of at least one is not actually needed,
        // but continues for 1.5 compatibility
        if (initialCapacity < 1)
            throw new IllegalArgumentException();
        this.queue = new Object[initialCapacity];
        this.comparator = comparator;
    }

    @SuppressWarnings("unchecked")
    public PriorityQueue(Collection<? extends E> c) {
        if (c instanceof SortedSet<?>) {
        <!--当是从一个内容有序的构建时,直观理解是直接复制即可,调用的是 initElementsFromCollection-->
            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
            this.comparator = (Comparator<? super E>) ss.comparator();
            initElementsFromCollection(ss);
        }
        else if (c instanceof PriorityQueue<?>) {
         <!--当是从一个内容有序的构建时,直观理解是直接复制即可,调用的是 initFromPriorityQueue,我们可以得到一个信息PriorityQueue不是SortedSet-->
            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
            this.comparator = (Comparator<? super E>) pq.comparator();
            initFromPriorityQueue(pq);
        }
        else {
        <!--如果不是内容有序的就调用initFromCollection-->
            this.comparator = null;
            initFromCollection(c);
        }
    }

    @SuppressWarnings("unchecked")
    public PriorityQueue(PriorityQueue<? extends E> c) {
        this.comparator = (Comparator<? super E>) c.comparator();
        initFromPriorityQueue(c);
    }

    @SuppressWarnings("unchecked")
    public PriorityQueue(SortedSet<? extends E> c) {
        this.comparator = (Comparator<? super E>) c.comparator();
        initElementsFromCollection(c);
    }

    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
        if (c.getClass() == PriorityQueue.class) {
            this.queue = c.toArray();
            this.size = c.size();
        } else {
            initFromCollection(c);
        }
    }

    private void initElementsFromCollection(Collection<? extends E> c) {
        Object[] a = c.toArray();
        // If c.toArray incorrectly doesn't return Object[], copy it.
        if (a.getClass() != Object[].class)
            a = Arrays.copyOf(a, a.length, Object[].class);
        int len = a.length;
        if (len == 1 || this.comparator != null)
            for (int i = 0; i < len; i++)
                if (a[i] == null)
                    throw new NullPointerException();
        this.queue = a;
        this.size = a.length;
    }

    private void initFromCollection(Collection<? extends E> c) {
        <!--现在我们明白了,initElementsFromCollection就是复制元素,而heapify就是对其进行排序-->
        initElementsFromCollection(c);
        heapify();
    }

    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    @SuppressWarnings("unchecked")
    private void heapify() {
    <!--循环遍历前边的一半元素,然后调用siftDown方法,其内部是使用二叉树来管理的,i的左孩子在2i-1,i的右孩子在2i-->
        for (int i = (size >>> 1) - 1; i >= 0; i--)
            siftDown(i, (E) queue[i]);
    }

    private void siftDown(int k, E x) {
    两个基本一样,我们找一个来分析,siftDownComparable
        if (comparator != null)
            siftDownUsingComparator(k, x);
        else
            siftDownComparable(k, x);
    }

    @SuppressWarnings("unchecked")
    private void siftDownComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>)x;
        int half = size >>> 1;        // loop while a non-leaf
        <!--取到中间位置。-->
        while (k < half) {
        <!--前边调用的地方,k恰好比half小1,k*2恰好是size-2,所以child是其size-1,恰好是他的左孩子-->
            int child = (k << 1) + 1; // assume left child is least
            Object c = queue[child];
            <!--right是它的右孩子-->
            int right = child + 1;
            <!--如果左孩子比右孩子大说明需要调整-->
            if (right < size &&
                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
                <!--对c进行赋值,让其是后边两个节点的小值-->
                如果右边比左边大,这里不走,最后交换的就是k和左节点,如果右边比左边小,最后交换的是k和右节点
                c = queue[child = right];
            if (key.compareTo((E) c) <= 0)
            <!--当前元素和c比较,如果比c小,就结束循环-->
                break;
            <!--交换k和c的元素-->
            queue[k] = c;
            k = child;
        }
        queue[k] = key;
    }

答案并不是完全的正序,这是为什么呢。
我们再来看下siftDown的注释,它的作用是使当前的元素插入队列,最后它比它的子节点小或者相等,或者它本身是个叶子节点。所以我们在构造的时候就是让左边一半调用,假设有6个元素,先保证了2是25中最小的,1是34中最小的,0是12中最小的,0就是最小。所以最后第一个元素是最小的。

<!--非常清楚的说了,使用iterator并不保证顺序-->
/**
     * Returns an iterator over the elements in this queue. The iterator
     * does not return the elements in any particular order.
     *
     * @return an iterator over the elements in this queue
     */
    public Iterator<E> iterator() {
        return new Itr();
    }

我们先来看offer方法

public boolean offer(E e) {
        if (e == null)
            throw new NullPointerException();
        modCount++;
        int i = size;
        if (i >= queue.length)
        <!--长度+1,保证可以存储-->
            grow(i + 1);
        size = i + 1;
        if (i == 0)
            queue[0] = e;
        else
        <!--最重要的方法-->
            siftUp(i, e);
        return true;
    }
@SuppressWarnings("unchecked")
    private void siftUpComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (key.compareTo((E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = key;
    }

分析过程和前边的sfitDown类似,它能保证从k找它的父节点,一直到队列的开始,这些节点都是有序的,所以最开始的还是最小的。

<!--使用poll可以保证有序-->
public E poll() {
        if (size == 0)
            return null;
        int s = --size;
        modCount++;
        E result = (E) queue[0];
        E x = (E) queue[s];
        queue[s] = null;
        if (s != 0)
            siftDown(0, x);
        return result;
    }

移除一个后,马上调用siftDown,传的是0,它能保证从0开始到它的叶子结点,0的子结点如果还有子结点就继续比较,在这一系列中,0位置的是最小的,所以最后又保证了下次调用的时候还是有序的。

SVN和git

是时候放弃HashMap了-SparseArray和ArrayMap源码分析
SparseArray
ArrayMap的实现原理

system类
object类。

FragmentStatePagerAdapter save restore FM getFragmet和putFragment;

viewpager的

 @Override
    public Parcelable onSaveInstanceState() {
        Parcelable superState = super.onSaveInstanceState();
        SavedState ss = new SavedState(superState);
        ss.position = mCurItem;
        if (mAdapter != null) {
            ss.adapterState = mAdapter.saveState();
        }
        return ss;
    }

    @Override
    public void onRestoreInstanceState(Parcelable state) {
        if (!(state instanceof SavedState)) {
            super.onRestoreInstanceState(state);
            return;
        }

        SavedState ss = (SavedState) state;
        super.onRestoreInstanceState(ss.getSuperState());

        if (mAdapter != null) {
            mAdapter.restoreState(ss.adapterState, ss.loader);
            setCurrentItemInternal(ss.position, false, true);
        } else {
            mRestoredCurItem = ss.position;
            mRestoredAdapterState = ss.adapterState;
            mRestoredClassLoader = ss.loader;
        }
    }

双进程问题

上一篇下一篇

猜你喜欢

热点阅读