线性相关的本质

2020-04-17  本文已影响0人  Tsukinousag

本质就是抓牢“多余”

定理是“死”的。但从空间里看线性相关和线性无关,向量就“活”了,定理也就“活”了


1.以少表多,多的相关(严格少)
2.部分相关,整体相关;整体无关,部分无关
3.高维无关,低维无关;低维相关,高维相关



一组向量中,至少有一个是多余的,没有对张成空间做出任何贡献,并且可以移除其中一个而不减少张成的空间,当这种情况发生时,称它们是“线性相关”的。

按照多余的思想,那么含有零向量有成比例的向量的向量组必线性相关

另一种表述方法是其中一个向量,可以表示为其它向量的线性组合,因为这个向量已经落在其它向量的张成空间中


如果所有向量都给张成的空间增添了新的维度,它们就被称为是“线性无关”的。

一维直线增到二维平面 二维平面增到三维空间

因此,单个非0向量两个不成比例的向量均线性无关。


上一篇 下一篇

猜你喜欢

热点阅读