pandas.dataframe

2021-09-20  本文已影响0人  芒鞋儿

df.set_index

DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)

para解释:

keys:列标签或列标签/数组列表,需要设置为索引的列

drop:默认为True,删除用作新索引的列

append:是否将列附加到现有索引,默认为False。

inplace:输入布尔值,表示当前操作是否对原数据生效,默认为False。

verify_integrity:检查新索引的副本。否则,请将检查推迟到必要时进行。将其设置为false将提高该方法的性能,默认为false。

df.reset_index

DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')

para解释:
level:数值类型可以为:int、str、tuple或list,默认无,仅从索引中删除给定级别。默认情况下移除所有级别。控制了具体要还原的那个等级的索引 。

drop:当指定drop=False时,则索引列会被还原为普通列;否则,经设置后的新索引值被会丢弃。默认为False。

inplace:输入布尔值,表示当前操作是否对原数据生效,默认为False。

col_level:数值类型为int或str,默认值为0,如果列有多个级别,则确定将标签插入到哪个级别。默认情况下,它将插入到第一级。

col_fill:对象,默认‘’,如果列有多个级别,则确定其他级别的命名方式。如果没有,则重复索引名。

参考
如何在pandas中使用set_index( )与reset_index( )设置索引

上一篇下一篇

猜你喜欢

热点阅读