分布式爬取豆瓣电影
1 前言
前一阵子看了不少关于分布式爬虫系统的设计相关的博客,现在也想写个练练手,就拿大家都喜欢看的豆瓣电影做个测试好了,代码的框架结构如图所示
分布式结构图.png
编程之前需要熟悉:
- redis基本安装和使用(python redis库)
- MongoDB基本安装和使用(python mongoengine库)
- RabbitMQ消息队列的基本安装和使用(pyhton pika库)
- Linux系统的screen 命令 !!!非常便于vps管理
服务端程序基于python3 开发
爬虫客户端基于python3和scrapy开发
开发之前研究了下豆瓣的电影类目下网页格式
https://movie.douban.com/j/new_search_subjects?sort=T&range=0,10&tags=电影&start=7100
start 从 0 到9979,指的是第一条数据的序号,每次会返回20条数据,总共有1万条电影信息,我们请求的返回格式如下
请求返回的格式
,然后响应数据的url,就可以通过
bloom-filter过滤后存到我们新的任务队列中,理想状态下 100500次请求后,我们的数据里就会有10000条电影信息了(实际上爬出来了9982条和18条404被和谐的,然而豆瓣反爬真的很厉害,两台机器爬了一天多才完成任务,速度问题后面会讲,主要是笔者没有稳定的ip池,免费的不好用以及客户端太少并且豆瓣ip访问频率过高就返回302或403的反爬虫策略太为严格导致的。。。插句题外话,爬小电影网站时不用分布式,一台机器一天就爬了13万个左右番号信息)
2 代码基本解析
爬取数据比较重要的地方有下面几块
1.redis的使用 (任务进出管理和bloom-filter)
2.mongoDB的使用 (电影数据存储和记录未完成信息)
3.RabbitMQ的使用 (用于爬虫客户端和服务端rpc通讯,发布和完成任务)
2.1 redis 管理任务和去重
笔者将url任务分为a和b两个优先级,a>b ,将启动的url(豆瓣的电影列表) 存在 arank的redis set里面,爬下来的电影详情url 经过bloom-filter去重后存到brank的redis set里面。
大体代码如下
redis_controller.py
#encoding=utf-8
import datetime
import traceback
from collections import Iterable
import redis
from hashlib import md5
from sql_model import monogo_controller
#连接redis
pool = redis.ConnectionPool(host='localhost', port=6379, decode_responses=True)
arank_str = 'arank'
brank_str = 'brank'
url_limit = 5
r = redis.Redis(connection_pool=pool)
def get_out_urls():
'''
取出给爬虫客户端的任务url
至多五个
:return:
'''
arank_data_len = r.scard(arank_str)
outdata = []
#从arank等级的redis里面寻找是否有任务
if arank_data_len > 0:
for i in range(url_limit):
popdata = r.spop(arank_str)
if popdata is not None:
outdata.append(popdata)
try:
#返回给客户端时,将未完成任务存在mongoDB中
#完成后再删除
monogo_controller.TempJob(_id=popdata,work_start=datetime.datetime.now()).save(force_insert=True)
except:
traceback.print_exc()
pass
else:
break
#arank等级的redis里面没有任务时
# 寻找brank是否有任务
elif r.scard(brank_str) > 0:
for i in range(url_limit):
popdata = r.spop(brank_str)
if popdata is not None:
outdata.append(popdata)
try:
monogo_controller.TempJob(_id=popdata,work_start=datetime.datetime.now()).save(force_insert=True)
except:
traceback.print_exc()
pass
else:
break
#arank和brank里面都没有任务时,取出mongodb里面超过1h还未完成的任务
else:
for mogoi in range(5):
timejobs = monogo_controller.TempJob.objects(
work_start__lt=(datetime.datetime.now() - datetime.timedelta(hours=1))
).limit(1).modify(work_start=datetime.datetime.now())
if not timejobs:
break
outdata.append(timejobs._id)
return outdata
def puturl(rank,urls):
'''
将任务存入redis
:param rank: 任务等级
:param urls: 链接
:return:
'''
assert isinstance(urls,Iterable)
for url in urls:
#进行bloomfilter 过滤
if not bf.isContains(url.encode()):
bf.insert(url.encode())
if rank==arank_str:
r.sadd(arank_str,url)
else:
r.sadd(brank_str,url)
def puturl_safe(rank,urls):
'''
不经过bloomfilter,直接将任务放入redis,用于手动造初始化数据url
:param rank:
:param urls:
:return:
'''
#安全的加入种子URL
assert isinstance(urls,Iterable)
for url in urls:
if rank==arank_str:
r.sadd(arank_str,url)
else:
r.sadd(brank_str,url)
class SimpleHash(object):
'''
bloomfilter使用的hash算法
网上找到
'''
def __init__(self, cap, seed):
self.cap = cap
self.seed = seed
def hash(self, value):
ret = 0
for i in range(len(value)):
ret += self.seed * ret + ord(value[i])
return (self.cap - 1) & ret
class BloomFilter(object):
def __init__(self, blockNum=1, key='doubanbloomfilter'):
"""
初始化布隆过滤器
:param blockNum: one blockNum for about 90,000,000; if you have more strings for filtering, increase it.
:param key: the key's name in Redis
"""
self.server = r
self.bit_size = 1 << 31 # Redis的String类型最大容量为512M,现使用256M
self.seeds = [5, 7, 11, 13, 31, 37, 61]
self.key = key
self.blockNum = blockNum
self.hashfunc = []
for seed in self.seeds:
self.hashfunc.append(SimpleHash(self.bit_size, seed))
def isContains(self, str_input):
'''
str_input是否有,没有的话会自动入库
:param str_input:
:return:
'''
if not str_input:
return False
m5 = md5()
m5.update(str_input)
str_input = m5.hexdigest()
ret = True
name = self.key + str(int(str_input[0:2], 16) % self.blockNum)
for f in self.hashfunc:
loc = f.hash(str_input)
ret = ret & self.server.getbit(name, loc)
return ret
def insert(self, str_input):
'''
将hash出来的几个指存入redis数据库中的bit中
:param str_input:
:return:
'''
m5 = md5()
m5.update(str_input)
str_input = m5.hexdigest()
name = self.key + str(int(str_input[0:2], 16) % self.blockNum)
for f in self.hashfunc:
loc = f.hash(str_input)
self.server.setbit(name, loc, 1)
bf = BloomFilter()
2.2 mongoDB(电影数据存储和记录未完成信息)
数据库使用的是mongoDB,用python mongoengine 插件 进行ORM管理,数据类如下
#电影数据类
import datetime
import mongoengine
import time
from mongoengine import StringField,DateTimeField,ListField,LongField,FloatField,IntField
#连接MongoDB
mongoengine.connect('douban',username='pig',password='pig@123456',authentication_source="admin")
class TempJob(mongoengine.Document):
'''
未完成任务数据ORM类
'''
_id= StringField(required=True,unique=True,primary_key=True)
work_start=DateTimeField(required=True,default=datetime.datetime.now())
class MoiveDataModel(mongoengine.Document):
'''
电影数据类
'''
director= ListField(StringField())
douban_id=LongField(unique=True,primary_key=True,required=True)
tags=ListField(StringField())
stars=ListField(StringField())
desc=StringField(required=True)
douban_remark=FloatField()
imdb_tag=StringField()
contry=StringField()
language=StringField()
publictime=DateTimeField()
runtime=IntField()
votes=IntField()
title=StringField(required=True)
def delete(urls):
#完成任务后删除
for url in urls:
TempJob.objects(_id=url).delete()
2.3 rabbitmq 实现爬虫客户端和主服务端进行RPC通讯
通过rabbitmq 实现rpc的方式通讯,大体逻辑就是爬虫客户端通过rpc请求服务端分发任务,同时告知服务端任务完成情况和爬取到的数据对象,服务端收到请求时,数据存到需要存到的地方,并且从redis和mongoDB找到下一批任务返回客户端
rpc 服务端代码如下
import json
import traceback
import pika
from main_server_side import redis_controller
from sql_model import monogo_controller
from sql_model.monogo_controller import MoiveDataModel
#连接MQ
#确保消息queue建立
cred = pika.PlainCredentials(username='pig', password='pig123')
connection = pika.BlockingConnection(
pika.ConnectionParameters(host='xx.xxx.xxx.xxx', credentials=cred))
channel = connection.channel()
channel.queue_declare(queue='rpc_queue_douban')
def on_request(ch, method, props, body):
'''
收到客户端请求的回调
:param ch:
:param method:
:param props:
:param body:
:return:
'''
try:
print("send_data")
jsondata = json.loads(body.decode())
print(jsondata)
done_urls=jsondata.get("done")
rankstr=jsondata.get('rankstr')
rankurls=jsondata.get("new_urls")
if done_urls is not None:
print("del done_urls")
print(done_urls)
monogo_controller.delete(done_urls)
if rankurls is not None:
redis_controller.puturl(rankstr,rankurls)
response=redis_controller.get_out_urls()
print("response is :")
print(response)
ch.basic_publish(exchange='',
routing_key=props.reply_to,
properties=pika.BasicProperties(
correlation_id=props.correlation_id
, content_type='application/json',
content_encoding='utf-8'),
body=json.dumps({"isok":True,"ans": response}))
ch.basic_ack(delivery_tag=method.delivery_tag)
result_map=jsondata.get("result_map")
if result_map is not None:
for mogodata in result_map:
try:
print(type(mogodata))
MoiveDataModel(**mogodata).save()
except:
traceback.print_exc()
pass
except Exception as e:
traceback.print_exc()
#设置每次只处理一次请求(单线程)
channel.basic_qos(prefetch_count=1,)
# 监听rpc_queue_douban
channel.basic_consume(on_request, queue='rpc_queue_douban')
print(" Awaiting DOUBAN RPC requests")
#等待请求
channel.start_consuming()
对应的rpc客户端设计如下
#!/usr/bin/env python
#encoding=utf-8
import json
import uuid
import pika
class RPCClient(object):
def __init__(self):
self.credentials = pika.PlainCredentials('pig', 'pig123')
self.connection = pika.BlockingConnection(pika.ConnectionParameters(host='xx.xx.xx.xx', credentials=self.credentials))
self.channel = self.connection.channel()
#设置回调为匿名唯一queue
result_queue=self.channel.queue_declare(exclusive=True)
self.callback_queue_name=result_queue.method.queue
self.channel.basic_consume(self.onresponse,self.callback_queue_name,no_ack=True)
self.responsedata=None
def onresponse(self,channel, method, properties, body):
if self.corrid == properties.correlation_id:
self.responsedata=body
def call(self,query_dict):
#correlation_id生成一个uuid
self.corrid=str(uuid.uuid4())
self.channel.basic_publish(exchange='',routing_key='rpc_queue_douban',body=json.dumps(query_dict)
,properties=pika.BasicProperties(content_type='application/json',content_encoding='utf-8'
,correlation_id=self.corrid,reply_to=self.callback_queue_name))
while self.responsedata is None:
self.connection.process_data_events(time_limit=None)
backresponse=self.responsedata
self.responsedata=None
return json.loads(backresponse.decode())
2.4爬虫客户端 scrapy接入RPC
scrapy客户端利用rpc通讯从服务端拿到任务,通过xpath解析页面拿到数据,代码如下
# -*- coding: utf-8 -*-
import json
import random
import re
import scrapy
import time
import logging
from urllib.parse import unquote
from scrapy import Request
from scrapy_client_side.scrapy_client_side.client_side import RPCClient
logging.basicConfig(filename='douban_spider.log', filemode="a", level=logging.ERROR)
class DoubanSpider(scrapy.Spider):
name = 'douban_spider'
urlpre = "https://movie.douban.com/"
done_urls = []
result_map = []
rankstr = None
new_urls = []
#豆瓣触发反爬机制时会返回403和302
#这种时候爬虫暂停两个小时再爬取基本没有异常
handle_httpstatus_list = [403,302]
def start_requests(self):
while (True):
#rpc请求成功后随机停止30-60s,降低促发反爬虫的概率
if self.rankstr is None:
try:
rpc_response = RPCClient().call({"query": "start"})
except:
#rpc有时会和服务端连接失败,等待1分后重试
time.sleep(60)
continue
else:
try:
rpc_response = RPCClient().call(
{"done": self.done_urls, "rankstr": self.rankstr, "new_urls": self.new_urls,
"result_map": self.result_map})
print("get data from server sleep ")
time.sleep(random.randint(30,40))
except:
time.sleep(random.randint(55,65))
continue
try:
ansurls = rpc_response.get("ans")
print("ansis:")
print(ansurls)
#每次将数据rpc提交给服务端后清理掉
self.done_urls = []
self.rankstr = None
self.new_urls = []
self.result_map = []
if not ansurls :
time.sleep(30)
else:
for url in ansurls:
print("yield")
yield Request(self.urlpre + url, callback=self.parse,errback=self.errback_httpbin)
except:
time.sleep(30)
pass
def errback_httpbin(self, failure):
print(repr(failure))
def parse(self, response):
if not response.status==200:
time.sleep(7200)
yield Request(response.url, callback=self.parse,errback=self.errback_httpbin)
elif response.url.count(r'j/new_search_subjects') > 0:
resjson = json.loads(response.text)
urls = (unquote(data.get("url").replace("https://movie.douban.com/","")) for data in resjson.get('data'))
self.new_urls.extend(urls)
self.rankstr = 'brank'
self.done_urls.append(unquote(response.url.replace("https://movie.douban.com/","")))
elif response.url.count(r'subject/') > 0:
try:
response_dict = {}
# director = ListField(StringField)
# douban_id = LongField(unique=True, primary_key=True, required=True)
# tags = ListField(StringField)
# stars = ListField(StringField)
# desc = StringField(required=True)
# douban_remark = FloatField()
# imdb_tag = FloatField()
# contry = StringField()
# language = StringField()
# publictime = DateTimeField()
# runtime = IntField()
# votes = IntField()
response_dict["director"] = response.xpath("//a[contains(@rel,'v:directedBy')]/text()").extract()
response_dict["douban_id"] = int(response.xpath("//a[@share-id]/@share-id").get())
response_dict["tags"] = response.xpath("//div[contains(@class,'tags-body')]/a/text()").extract()
response_dict["stars"] = response.xpath("//a[contains(@rel,'v:starring')]/text()").extract()
response_dict["desc"] = "".join(
response.xpath("//span[contains(@property,'v:summary')]/text()").extract()).replace("\u3000", " ")
response_dict["douban_remark"] = float(
response.xpath("//strong[contains(@property,'v:average')]/text()").get())
response_dict["imdb_tag"] = response.xpath("//a[contains(@href,'imdb')]/text()").get()
response_dict["contry"] = response.xpath("//span[contains(text(),'制片国家')]/following-sibling::text()").get()
response_dict["language"] = response.xpath("//span[contains(text(),'语言')]/following-sibling::text()").get()
str = response.xpath("//span[contains(@property,'v:initialReleaseDate')]/text()").get()
try:
timestr = re.findall(r"\d{4}-\d{2}-\d{2}", str)[0]
response_dict["publictime"] = timestr
except:
pass
# 时长
try:
response_dict["runtime"] = int(response.xpath("//span[contains(@property,'v:runtime')]/@content").get())
except:
response_dict["runtime"]=-1
pass
response_dict["votes"] = int(response.xpath("//span[contains(@property,'v:votes')]/text()").get())
response_dict["title"] =response.xpath("//title/text()").get().replace("\n","").replace('(豆瓣)',"").strip()
print(response_dict)
self.rankstr=""
self.result_map.append(response_dict)
self.done_urls.append(unquote(response.url.replace("https://movie.douban.com/", "")))
except Exception as e:
logging.exception("spider parse error")
pass
可以通过python代码调用爬虫启动,并且设置setting项
from scrapy.crawler import CrawlerProcess
from scrapy.utils.project import get_project_settings
from scrapy_client_side.scrapy_client_side.spiders.douban_spider import DoubanSpider
s=get_project_settings()
s.set("USER_AGENT",'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:58.0) Gecko/20100101 Firefox/58.0')
s.set("ROBOTSTXT_OBEY" , False)
DOWNLOAD_DELAY = 10
RANDOMIZE_DOWNLOAD_DELAY = True
s.set('DOWNLOAD_DELAY',DOWNLOAD_DELAY)
s.set('RANDOMIZE_DOWNLOAD_DELAY',RANDOMIZE_DOWNLOAD_DELAY)
s.set('CONCURRENT_REQUESTS',1)
s.set('DOWNLOAD_TIMEOUT',60)
process1 = CrawlerProcess(s)
process1.crawl(DoubanSpider)
process1.start()
2.5造初始化的url数据
from main_server_side import redis_controller
urlstep=[]
for i in range(0,9981,20):
if i==9980:
num=9979
else:
num=i
urlstep.append("j/new_search_subjects?sort=T&range=0,10&tags=电影&start=%s"%(num))
redis_controller.puturl_safe(redis_controller.arank_str,urlstep)
关键代码就是这些了,使用时稍微组织下代码结构就可以了,
scrapy项目用scrapy startproject xxxx 命令生成,直接python -m的方式启动rpc服务端代码 和控制爬虫的python脚本代码运行
3后记
分布式爬取数据笔者认为解决了带宽和ip限制的问题,在这种情况下爬取效率和vps数量成正比,因为个人vps空间不足没有将下载的网页缓存到主服务器或者别的oss服务器上(这一步笔者认为是比较重要的,因为缓存下来后,当有别的字段要解析时速度快多)。这里写一下也是记录下自己的设计思路,也和各位读者朋友探讨下技术吧