机器学习实战(一) - 绪论 : 初识机器学习
1 欢迎来到机器学习
无人机应用
2 什么是机器学习
3 监督学习 - Supervised Learning
监督式学习就是指,首先需要提供一些数据集,对于数据集中的每个数据,都有相应的正确答案,(训练集)算法就是基于这些正确的答案来做出预测。又分为回归问题和分类问题。
1.回归问题:通过回归来预测一个连续的输出值。
2.分类问题:通过分类来预测一个离散值的输出。
Example 1:
Given data about the size of houses on the real estate market, try to predict their price. Price
as a function of size is a continuous output, so this is a regression problem.
We could turn this example into a classification problem by instead making our output about
whether the house "sells for more or less than the asking price." Here we are classifying the
houses based on price into two discrete categories.
直线拟合还是二次函拟合更好呢
Example 2:
(a) Regression - Given a picture of a person, we have to predict their age on the basis of the
given picture
- 回归
指的是我们设法预测连续值的属性
(b) Classification - Given a patient with a tumor, we have to predict whether the tumor is
malignant or benign.
-
分类
指的是
4 无监督式学习 - Unsupervised Learning
无监督式学习的输入数据没有标签,其目的式对原始材料进行分类,以便了解资料的内部结构。又分为聚类算法和非聚类算法。
聚类算法:可以用来组织大型的计算机集群;可以用来社交网络的分析;可以用于市场分割;可以用于天文数据分析。
根据基因分类
非聚类算法:鸡尾酒宴的问题。
b,c