LRU 算法
基本概念
LRU全称是Least Recently Used,即最近最少使用的意思。
LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。
实现LRU
1.用一个数组来存储数据,给每一个数据项标记一个访问时间戳,每次插入新数据项的时候,先把数组中存在的数据项的时间戳自增,并将新数据项的时间戳置为0并插入到数组中。每次访问数组中的数据项的时候,将被访问的数据项的时间戳置为0。当数组空间已满时,将时间戳最大的数据项淘汰。
2.利用一个链表来实现,每次新插入数据的时候将新数据插到链表的头部;每次缓存命中(即数据被访问),则将数据移到链表头部;那么当链表满的时候,就将链表尾部的数据丢弃。
lru.png
1. 新数据插入到链表头部;
2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;
3. 当链表满的时候,将链表尾部的数据丢弃。
3.利用链表和hashmap。当需要插入新的数据项的时候,如果新数据项在链表中存在(一般称为命中),则把该节点移到链表头部,如果不存在,则新建一个节点,放到链表头部,若缓存满了,则把链表最后一个节点删除即可。在访问数据的时候,如果数据项在链表中存在,则把该节点移到链表头部,否则返回-1。这样一来在链表尾部的节点就是最近最久未访问的数据项。
对于第一种方法,需要不停地维护数据项的访问时间戳,另外,在插入数据、删除数据以及访问数据时,时间复杂度都是O(n)。对于第二种方法,链表在定位数据的时候时间复杂度为O(n)。所以在一般使用第三种方式来是实现LRU算法。
LinkedHashMap底层就是用的HashMap加双链表实现的,而且本身已经实现了按照访问顺序的存储。此外,LinkedHashMap中本身就实现了一个方法removeEldestEntry用于判断是否需要移除最不常读取的数,方法默认是直接返回false,不会移除元素,所以需要重写该方法。即当缓存满后就移除最不常用的数。
实现代码
public class LRU<K,V> {
private static final float hashLoadFactory = 0.75f;
private LinkedHashMap<K,V> map;
private int cacheSize;
public LRU(int cacheSize) {
this.cacheSize = cacheSize;
int capacity = (int)Math.ceil(cacheSize / hashLoadFactory) + 1;
map = new LinkedHashMap<K,V>(capacity, hashLoadFactory, true){
private static final long serialVersionUID = 1;
@Override
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > LRU.this.cacheSize;
}
};
}
public synchronized V get(K key) {
return map.get(key);
}
public synchronized void put(K key, V value) {
map.put(key, value);
}
public synchronized void clear() {
map.clear();
}
public synchronized int usedSize() {
return map.size();
}
public void print() {
for (Map.Entry<K, V> entry : map.entrySet()) {
System.out.print(entry.getValue() + "--");
}
System.out.println();
}
}
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。
2. LRU-K
2.1. 原理
LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。
2.2. 实现
相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。详细实现如下:
LRU_K.png-
数据第一次被访问,加入到访问历史列表;
-
如果数据在访问历史列表里后没有达到K次访问,则按照一定规则(FIFO,LRU)淘汰;
-
当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列删除,将数据移到缓存队列中,并缓存此数据,缓存队列重新按照时间排序;
-
缓存数据队列中被再次访问后,重新排序;
-
需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即:淘汰“倒数第K次访问离现在最久”的数据。
LRU-K具有LRU的优点,同时能够避免LRU的缺点,实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。
2.3. 分析
【命中率】
LRU-K降低了“缓存污染”带来的问题,命中率比LRU要高。
【复杂度】
LRU-K队列是一个优先级队列,算法复杂度和代价比较高。
【代价】
由于LRU-K还需要记录那些被访问过、但还没有放入缓存的对象,因此内存消耗会比LRU要多;当数据量很大的时候,内存消耗会比较可观。
LRU-K需要基于时间进行排序(可以需要淘汰时再排序,也可以即时排序),CPU消耗比LRU要高。
3. Two queues(2Q)
3.1. 原理
Two queues(以下使用2Q代替)算法类似于LRU-2,不同点在于2Q将LRU-2算法中的访问历史队列(注意这不是缓存数据的)改为一个FIFO缓存队列,即:2Q算法有两个缓存队列,一个是FIFO队列,一个是LRU队列。
3.2. 实现
当数据第一次访问时,2Q算法将数据缓存在FIFO队列里面,当数据第二次被访问时,则将数据从FIFO队列移到LRU队列里面,两个队列各自按照自己的方法淘汰数据。详细实现如下:
2Q.png-
新访问的数据插入到FIFO队列;
-
如果数据在FIFO队列中一直没有被再次访问,则最终按照FIFO规则淘汰;
-
如果数据在FIFO队列中被再次访问,则将数据移到LRU队列头部;
-
如果数据在LRU队列再次被访问,则将数据移到LRU队列头部;
-
LRU队列淘汰末尾的数据。
注:上图中FIFO队列比LRU队列短,但并不代表这是算法要求,实际应用中两者比例没有硬性规定。
3.3. 分析
【命中率】
2Q算法的命中率要高于LRU。
【复杂度】
需要两个队列,但两个队列本身都比较简单。
【代价】
FIFO和LRU的代价之和。
2Q算法和LRU-2算法命中率类似,内存消耗也比较接近,但对于最后缓存的数据来说,2Q会减少一次从原始存储读取数据或者计算数据的操作。
4. Multi Queue(MQ)
4.1. 原理
MQ算法根据访问频率将数据划分为多个队列,不同的队列具有不同的访问优先级,其核心思想是:优先缓存访问次数多的数据。
4.2. 实现
MQ算法将缓存划分为多个LRU队列,每个队列对应不同的访问优先级。访问优先级是根据访问次数计算出来的,例如
详细的算法结构图如下,Q0,Q1....Qk代表不同的优先级队列,Q-history代表从缓存中淘汰数据,但记录了数据的索引和引用次数的队列:
MQ.png如上图,算法详细描述如下:
-
新插入的数据放入Q0;
-
每个队列按照LRU管理数据;
-
当数据的访问次数达到一定次数,需要提升优先级时,将数据从当前队列删除,加入到高一级队列的头部;
-
为了防止高优先级数据永远不被淘汰,当数据在指定的时间里访问没有被访问时,需要降低优先级,将数据从当前队列删除,加入到低一级的队列头部;
-
需要淘汰数据时,从最低一级队列开始按照LRU淘汰;每个队列淘汰数据时,将数据从缓存中删除,将数据索引加入Q-history头部;
-
如果数据在Q-history中被重新访问,则重新计算其优先级,移到目标队列的头部;
-
Q-history按照LRU淘汰数据的索引。
4.3. 分析
【命中率】
MQ降低了“缓存污染”带来的问题,命中率比LRU要高。
【复杂度】
MQ需要维护多个队列,且需要维护每个数据的访问时间,复杂度比LRU高。
【代价】
MQ需要记录每个数据的访问时间,需要定时扫描所有队列,代价比LRU要高。
注:虽然MQ的队列看起来数量比较多,但由于所有队列之和受限于缓存容量的大小,因此这里多个队列长度之和和一个LRU队列是一样的,因此队列扫描性能也相近。
LRU算法对比
对比点 对比
命中率 LRU-2 > MQ(2) > 2Q > LRU
复杂度 LRU-2 > MQ(2) > 2Q > LRU
代价 LRU-2 > MQ(2) > 2Q > LRU
实际应用中需要根据业务的需求和对数据的访问情况进行选择,并不是命中率越高越好。例如:虽然LRU看起来命中率会低一些,且存在”缓存污染“的问题,但由于其简单和代价小,实际应用中反而应用更多。
java中最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可
如果你去看LinkedHashMap的源码可知,LRU算法是通过双向链表来实现,当某个位置被命中,通过调整链表的指向将该位置调整到头位置,新加入的内容直接放在链表头,如此一来,最近被命中的内容就向链表头移动,需要替换时,链表最后的位置就是最近最少使用的位置。
import java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Map;
/**
* 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
*
* @author dennis
*
* @param <K>
* @param <V>
*/
public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {
private final int maxCapacity;
private static final float DEFAULT_LOAD_FACTOR = 0.75f;
private final Lock lock = new ReentrantLock();
public LRULinkedHashMap(int maxCapacity) {
super(maxCapacity, DEFAULT_LOAD_FACTOR, true);
this.maxCapacity = maxCapacity;
}
@Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
return size() > maxCapacity;
}
@Override
public boolean containsKey(Object key) {
try {
lock.lock();
return super.containsKey(key);
} finally {
lock.unlock();
}
}
@Override
public V get(Object key) {
try {
lock.lock();
return super.get(key);
} finally {
lock.unlock();
}
}
@Override
public V put(K key, V value) {
try {
lock.lock();
return super.put(key, value);
} finally {
lock.unlock();
}
}
public int size() {
try {
lock.lock();
return super.size();
} finally {
lock.unlock();
}
}
public void clear() {
try {
lock.lock();
super.clear();
} finally {
lock.unlock();
}
}
public Collection<Map.Entry<K, V>> getAll() {
try {
lock.lock();
return new ArrayList<Map.Entry<K, V>>(super.entrySet());
} finally {
lock.unlock();
}
}
}
基于双链表 的LRU实现:
传统意义的LRU算法是为每一个Cache对象设置一个计数器,每次Cache命中则给计数器+1,而Cache用完,需要淘汰旧内容,放置新内容时,就查看所有的计数器,并将最少使用的内容替换掉。
它的弊端很明显,如果Cache的数量少,问题不会很大, 但是如果Cache的空间过大,达到10W或者100W以上,一旦需要淘汰,则需要遍历所有计算器,其性能与资源消耗是巨大的。效率也就非常的慢了。
它的原理: 将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接加到链表头中。
这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的Cache。
当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。
上面说了这么多的理论, 下面用代码来实现一个LRU策略的缓存。
我们用一个对象来表示Cache,并实现双链表,
public class LRUCache {
/**
* 链表节点
* @author Administrator
*
*/
class CacheNode {
……
}
private int cacheSize;//缓存大小
private Hashtable nodes;//缓存容器
private int currentSize;//当前缓存对象数量
private CacheNode first;//(实现双链表)链表头
private CacheNode last;//(实现双链表)链表尾
}
下面给出完整的实现,这个类也被Tomcat所使用( org.apache.tomcat.util.collections.LRUCache),但是在tomcat6.x版本中,已经被弃用,使用另外其他的缓存类来替代它。
public class LRUCache {
/**
* 链表节点
* @author Administrator
*
*/
class CacheNode {
CacheNode prev;//前一节点
CacheNode next;//后一节点
Object value;//值
Object key;//键
CacheNode() {
}
}
public LRUCache(int i) {
currentSize = 0;
cacheSize = i;
nodes = new Hashtable(i);//缓存容器
}
/**
* 获取缓存中对象
* @param key
* @return
*/
public Object get(Object key) {
CacheNode node = (CacheNode) nodes.get(key);
if (node != null) {
moveToHead(node);
return node.value;
} else {
return null;
}
}
/**
* 添加缓存
* @param key
* @param value
*/
public void put(Object key, Object value) {
CacheNode node = (CacheNode) nodes.get(key);
if (node == null) {
//缓存容器是否已经超过大小.
if (currentSize >= cacheSize) {
if (last != null)//将最少使用的删除
nodes.remove(last.key);
removeLast();
} else {
currentSize++;
}
node = new CacheNode();
}
node.value = value;
node.key = key;
//将最新使用的节点放到链表头,表示最新使用的.
moveToHead(node);
nodes.put(key, node);
}
/**
* 将缓存删除
* @param key
* @return
*/
public Object remove(Object key) {
CacheNode node = (CacheNode) nodes.get(key);
if (node != null) {
if (node.prev != null) {
node.prev.next = node.next;
}
if (node.next != null) {
node.next.prev = node.prev;
}
if (last == node)
last = node.prev;
if (first == node)
first = node.next;
}
return node;
}
public void clear() {
first = null;
last = null;
}
/**
* 删除链表尾部节点
* 表示 删除最少使用的缓存对象
*/
private void removeLast() {
//链表尾不为空,则将链表尾指向null. 删除连表尾(删除最少使用的缓存对象)
if (last != null) {
if (last.prev != null)
last.prev.next = null;
else
first = null;
last = last.prev;
}
}
/**
* 移动到链表头,表示这个节点是最新使用过的
* @param node
*/
private void moveToHead(CacheNode node) {
if (node == first)
return;
if (node.prev != null)
node.prev.next = node.next;
if (node.next != null)
node.next.prev = node.prev;
if (last == node)
last = node.prev;
if (first != null) {
node.next = first;
first.prev = node;
}
first = node;
node.prev = null;
if (last == null)
last = first;
}
private int cacheSize;
private Hashtable nodes;//缓存容器
private int currentSize;
private CacheNode first;//链表头
private CacheNode last;//链表尾
}