arXiv daily

机器学习每日论文速递[08.23]

2019-08-23  本文已影响21人  arXiv每日论文速递

同步公众号(arXiv每日论文速递),回复'search 关键词'查询相关最新论文。(* ̄rǒ ̄)

cs.LG 方向,今日共计59篇

[cs.LG]:

【1】 Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes
标题:马尔可夫决策过程中有效的策略外评估的双强化学习
作者: Nathan Kallus, Masatoshi Uehara
链接:https://arxiv.org/abs/1908.08526

【2】 Transfer Learning for Relation Extraction via Relation-Gated Adversarial Learning
标题:通过关系门控对抗学习进行关系抽取的转移学习
作者: Ningyu Zhang, Huajun Chen
链接:https://arxiv.org/abs/1908.08507

【3】 DynGraph2Seq: Dynamic-Graph-to-Sequence Interpretable Learning for Health Stage Prediction in Online Health Forums
标题:DynGraph2Seq:在线健康论坛中用于健康阶段预测的动态图到序列可解释学习
作者: Yuyang Gao, Liang Zhao
备注:6 pages. Accepted as ICDM 2019 Short Paper. Final Version
链接:https://arxiv.org/abs/1908.08497

【4】 Data Context Adaptation for Accurate Recommendation with Additional Information
标题:数据上下文自适应,用于具有附加信息的准确推荐
作者: Hyunsik Jeon, U Kang
链接:https://arxiv.org/abs/1908.08469

【5】 Efficient Cross-Validation of Echo State Networks
标题:回声状态网络的高效交叉验证
作者: Mantas Lukoševičius (1), Arnas Uselis (1) ((1) Kaunas University of Technology)
备注:Accepted in ICANN'19 Workshop on Reservoir Computing
链接:https://arxiv.org/abs/1908.08450

【6】 A Deep Actor-Critic Reinforcement Learning Framework for Dynamic Multichannel Access
标题:一种用于动态多通道访问的深度角色-批评者强化学习框架
作者: Chen Zhong, Senem Velipasalar
备注:14 figures. arXiv admin note: text overlap with arXiv:1810.03695
链接:https://arxiv.org/abs/1908.08401

【7】 Practical Risk Measures in Reinforcement Learning
标题:强化学习中的实用风险度量
作者: Dotan Di Castro, Shie Mannor
链接:https://arxiv.org/abs/1908.08379

【8】 A General Data Renewal Model for Prediction Algorithms in Industrial Data Analytics
标题:工业数据分析中预测算法的通用数据更新模型
作者: Hongzhi Wang, Yang Song
链接:https://arxiv.org/abs/1908.08368

【9】 LoRAS: An oversampling approach for imbalanced datasets
标题:LORAS:一种不平衡数据集的过采样方法
作者: Saptarshi Bej, Olaf Wolkenhauer
链接:https://arxiv.org/abs/1908.08346

【10】 A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation
标题:一种多目标强化学习和策略自适应的广义算法
作者: Runzhe Yang, Karthik Narasimhan
链接:https://arxiv.org/abs/1908.08342

【11】 An End-to-End Encrypted Neural Network for Gradient Updates Transmission in Federated Learning
标题:一种用于联邦学习中梯度更新传输的端到端加密神经网络
作者: Hongyu Li, Tianqi Han
链接:https://arxiv.org/abs/1908.08340

【12】 The Learning of Fuzzy Cognitive Maps With Noisy Data: A Rapid and Robust Learning Method With Maximum Entropy
标题:带噪声数据的模糊认知图学习:一种快速稳健的最大熵学习方法
作者: Guoliang Feng, Xiaodong Liu
链接:https://arxiv.org/abs/1908.08339

【13】 Learning stochastic differential equations using RNN with log signature features
标题:利用具有对数签名特征的RNN学习随机微分方程
作者: Shujian Liao, Hao Ni
链接:https://arxiv.org/abs/1908.08286

【14】 NL-LinkNet: Toward Lighter but More Accurate Road Extraction with Non-Local Operations
标题:NL-LinkNet:通过非本地操作实现更轻但更精确的道路提取
作者: Yooseung Wang, Taegyun Jeon
链接:https://arxiv.org/abs/1908.08223

【15】 Finite Precision Stochastic Optimisation -- Accounting for the Bias
标题:有限精度随机优化-偏差的计算
作者: Prathamesh Mayekar, Himanshu Tyagi
链接:https://arxiv.org/abs/1908.08200

【16】 Semi-supervised Adversarial Active Learning on Attributed Graphs
标题:属性图上的半监督对抗性主动学习
作者: Yayong Li, Ling Chen
链接:https://arxiv.org/abs/1908.08169

【17】 A Neural Network for Semi-Supervised Learning on Manifolds
标题:流形上半监督学习的神经网络
作者: Alexander Genkin, Dmitri Chklovskii
备注:12 pages, 4 figures, accepted in ICANN 2019
链接:https://arxiv.org/abs/1908.08145

【18】 Transferability and Hardness of Supervised Classification Tasks
标题:监督分类任务的可移植性和硬度
作者: Anh T. Tran, Tal Hassner
备注:This paper is published at the International Conference on Computer Vision (ICCV) 2019
链接:https://arxiv.org/abs/1908.08142

【19】 Dynamic Scheduling of MPI-based Distributed Deep Learning Training Jobs
标题:基于MPI的分布式深度学习训练作业的动态调度
作者: Tim Capes, Iqbal Mohomed
链接:https://arxiv.org/abs/1908.08082

【20】 Hebbian Graph Embeddings
标题:Hebbian图嵌入
作者: Shalin Shah, Venkataramana Kini
链接:https://arxiv.org/abs/1908.08037

【21】 Deep Reinforcement Learning for Foreign Exchange Trading
标题:外汇交易的深度强化学习
作者: Chun-Chieh Wang, Yun-Cheng Tsai
链接:https://arxiv.org/abs/1908.08036

【22】 VL-BERT: Pre-training of Generic Visual-Linguistic Representations
标题:VL-BERT:类属视觉语言表征的预训练
作者: Weijie Su, Jifeng Dai
链接:https://arxiv.org/abs/1908.08530

【23】 Sequential Latent Spaces for Modeling the Intention During Diverse Image Captioning
标题:用于不同图像字幕中意图建模的顺序潜在空间
作者: Jyoti Aneja, Alexander Schwing
备注:Accepted to ICCV 2019
链接:https://arxiv.org/abs/1908.08529

【24】 Adversarial-Based Knowledge Distillation for Multi-Model Ensemble and Noisy Data Refinement
标题:基于对抗性的多模型集成和噪声数据精化的知识提取
作者: Zhiqiang Shen, Marios Savvides
备注:This is an extended version of our previous conference paper arXiv:1812.02425
链接:https://arxiv.org/abs/1908.08520

【25】 ColorNet -- Estimating Colorfulness in Natural Images
标题:ColorNet-自然图像的色度估计
作者: Emin Zerman, Aljosa Smolic
备注:Accepted to IEEE International Conference on Image Processing (ICIP) 2019
链接:https://arxiv.org/abs/1908.08505

【26】 Time series model selection with a meta-learning approach; evidence from a pool of forecasting algorithms
标题:用元学习方法选择时间序列模型;来自预测算法池的证据
作者: Sasan Barak, Mehrdad Rostamzadeh
链接:https://arxiv.org/abs/1908.08489

【27】 Minimum Description Length Revisited
标题:重新修订的最小描述长度
作者: Peter Grünwald, Teemu Roos
链接:https://arxiv.org/abs/1908.08484

【28】 The many Shapley values for model explanation
标题:用于模型解释的许多Shapley值
作者: Mukund Sundararajan, Amir Najmi
链接:https://arxiv.org/abs/1908.08474

【29】 U-Net Training with Instance-Layer Normalization
标题:具有实例层规范化的U-NET训练
作者: Xiao-Yun Zhou, Guang-Zhong Yang
备注:8 pages, 3 figures, accepted by MICCAI-MMMI 2019 workshop
链接:https://arxiv.org/abs/1908.08466

【30】 On the convergence of single-call stochastic extra-gradient methods
标题:关于单次调用随机外梯度方法的收敛性
作者: Yu-Guan Hsieh, Panayotis Mertikopoulos
链接:https://arxiv.org/abs/1908.08465

【31】 Noise Flow: Noise Modeling with Conditional Normalizing Flows
标题:噪声流:使用条件归一化流的噪声建模
作者: Abdelrahman Abdelhamed, Michael S. Brown
链接:https://arxiv.org/abs/1908.08453

【32】 Improved MR to CT synthesis for PET/MR attenuation correction using Imitation Learning
标题:利用模仿学习改进的用于PET/MR衰减校正的MR to CT合成
作者: Kerstin Kläser, Sebastien Ourselin
备注:Aceppted at SASHIMI2019
链接:https://arxiv.org/abs/1908.08431

【33】 Improving the dynamics of quantum sensors with reinforcement learning
标题:用强化学习改善量子传感器的动力学
作者: Jonas Schuff, Daniel Braun
链接:https://arxiv.org/abs/1908.08416

【34】 A General Analysis Framework of Lower Complexity Bounds for Finite-Sum Optimization
标题:有限和优化的低复杂度上界的一般分析框架
作者: Guangzeng Xie, Zhihua Zhang
链接:https://arxiv.org/abs/1908.08394

【35】 Chaotic Time Series Prediction using Spatio-Temporal RBF Neural Networks
标题:基于时空RBF神经网络的混沌时间序列预测
作者: Alishba Sadiq, Shujaat Khan
备注:Published in: 2018 3rd International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST). arXiv admin note: substantial text overlap with arXiv:1908.01321
链接:https://arxiv.org/abs/1908.08389

【36】 ElectroLens: Understanding Atomistic Simulations Through Spatially-resolved Visualization of High-dimensional Features
标题:电透镜:通过高维特征的空间分辨可视化理解原子模拟
作者: Xiangyun Lei, Andrew J. Medford
备注:accepted to IEEE visualization 2019 conference
链接:https://arxiv.org/abs/1908.08381

【37】 Analysis of Wide and Deep Echo State Networks for Multiscale Spatiotemporal Time Series Forecasting
标题:多尺度时空时间序列预测的宽、深回波态网络分析
作者: Zachariah Carmichael, Dhireesha Kudithipudi
备注:10 pages, 10 figures, Proceedings of the Neuro-inspired Computational Elements Workshop (NICE '19), March 26-28, 2019, Albany, NY, USA
链接:https://arxiv.org/abs/1908.08380

【38】 The compositionality of neural networks: integrating symbolism and connectionism
标题:神经网络的组合性:象征主义与联结主义的整合
作者: Dieuwke Hupkes, Elia Bruni
链接:https://arxiv.org/abs/1908.08351

【39】 Text Summarization with Pretrained Encoders
标题:使用预先训练的编码器进行文本摘要
作者: Yang Liu, Mirella Lapata
备注:To appear in EMNLP 2019
链接:https://arxiv.org/abs/1908.08345

【40】 Centralized and Distributed Machine Learning-Based QoT Estimation for Sliceable Optical Networks
标题:基于集中式和分布式机器学习的切片光网络Qot估计
作者: Tania Panayiotou, Georgios Ellinas
备注:accepted for presentation at the IEEE GLOBECOM 2019
链接:https://arxiv.org/abs/1908.08338

【41】 Deep Green Function Convolution for Improving Saliency in Convolutional Neural Networks
标题:改进卷积神经网络显着性的深层格林函数卷积
作者: Dominique Beaini, Maxime Raison
链接:https://arxiv.org/abs/1908.08331

【42】 Measuring the Business Value of Recommender Systems
标题:衡量推荐系统的商业价值
作者: Dietmar Jannach, Michael Jugovac
链接:https://arxiv.org/abs/1908.08328

【43】 LEAP nets for power grid perturbations
标题:电网扰动的跳跃网络
作者: Benjamin Donnot (TAU), Marc Schoenauer (TAU)
链接:https://arxiv.org/abs/1908.08314

【44】 Two-Stage Session-based Recommendations with Candidate Rank Embeddings
标题:嵌入候选等级的两阶段基于会话的推荐
作者: José Antonio Sánchez Rodríguez, Mustafa Khandwawala
备注:Accepted in the Fashion RECSYS workshop recsysXfashion'19, September 20, 2019, Copenhagen, Denmark
链接:https://arxiv.org/abs/1908.08284

【45】 Adaptive Configuration Oracle for Online Portfolio Selection Methods
标题:用于在线投资组合选择方法的自适应配置Oracle
作者: Favour M. Nyikosa, Stephen J. Roberts
链接:https://arxiv.org/abs/1908.08258

【46】 Distributed Cooperative Online Estimation With Random Observation Matrices, Communication Graphs and Time-Delays
标题:随机观测矩阵、通信图和时延的分布式协同在线估计
作者: Jiexiang Wang, Tao Li
链接:https://arxiv.org/abs/1908.08245

【47】 motif2vec: Motif Aware Node Representation Learning for Heterogeneous Networks
标题:Motif2vec:异构网络中的Motif感知节点表示学习
作者: Manoj Reddy Dareddy, Hao Yang
链接:https://arxiv.org/abs/1908.08227

【48】 Convolutional Recurrent Reconstructive Network for Spatiotemporal Anomaly Detection in Solder Paste Inspection
标题:用于焊膏检测时空异常检测的卷积递归重构网络
作者: Yong-Ho Yoo, Jong-Hwan Kim
链接:https://arxiv.org/abs/1908.08204

【49】 A CNN toolbox for skin cancer classification
标题:CNN皮肤癌分类工具箱
作者: Fabrizio Nunnari, Daniel Sonntag
链接:https://arxiv.org/abs/1908.08187

【50】 Report on the First Knowledge Graph Reasoning Challenge 2018 -- Toward the eXplainable AI System
标题:2018年首届知识图推理挑战赛报告-走向可解释的AI系统
作者: Takahiro Kawamura, Kouji Kozaki
链接:https://arxiv.org/abs/1908.08184

【51】 Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques
标题:基于回归和聚类技术的住宅房间空调节能性能标杆
作者: Yuren Zhou, Yeong Ming Keow
备注:38 pages (single column), 7 figures, 6 tables. This manuscript is published in Applied Energy 253 (2019): 113548. Please refer to the published version at this https URL
链接:https://arxiv.org/abs/1908.08176

【52】 Intra-day Equity Price Prediction using Deep Learning as a Measure of Market Efficiency
标题:利用深度学习作为市场效率度量的日内股权价格预测
作者: David Byrd, Tucker Hybinette Balch
链接:https://arxiv.org/abs/1908.08168

【53】 Neural Plasticity Networks
标题:神经可塑性网络
作者: Yang Li, Shihao Ji
备注:arXiv admin note: text overlap with arXiv:1904.04432
链接:https://arxiv.org/abs/1908.08118

【54】 BRIDGE: Byzantine-resilient Decentralized Gradient Descent
标题:桥梁:拜占庭-弹性分散梯度下降
作者: Zhixiong Yang, Waheed U. Bajwa
备注:18 pages, 1 figure, 1 table; preprint of a conference paper
链接:https://arxiv.org/abs/1908.08098

【55】 Boundary Aware Networks for Medical Image Segmentation
标题:边界感知网络在医学图像分割中的应用
作者: Ali Hatamizadeh, Andriy Myronenko
备注:Accepted to Machine Learning in Medical Imaging (MLMI 2019)
链接:https://arxiv.org/abs/1908.08071

【56】 Automated quantum programming via reinforcement learning for combinatorial optimization
标题:通过强化学习实现组合优化的自动量子规划
作者: Keri A. McKiernan, Chad Rigetti
链接:https://arxiv.org/abs/1908.08054

【57】 Modeling the Gaia Color-Magnitude Diagram with Bayesian Neural Flows to Constrain Distance Estimates
标题:用贝叶斯神经流建模盖亚颜色-幅度图以约束距离估计
作者: Miles D. Cranmer, Shirley Ho
链接:https://arxiv.org/abs/1908.08045

【58】 Coarse-to-fine Optimization for Speech Enhancement
标题:用于语音增强的从粗到细的优化
作者: Jian Yao, Ahmad Al-Dahle
链接:https://arxiv.org/abs/1908.08044

【59】 More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation
标题:更多未标记的数据或标记更多数据?半监督腹腔镜图像分割的研究
作者: Yunguan Fu, Yipeng Hu
备注:Accepted to MICCAI MIL3ID 2019
链接:https://arxiv.org/abs/1908.08035

翻译:腾讯翻译君

上一篇 下一篇

猜你喜欢

热点阅读