物联网是解决“小”数据问题的关键
物联网为获取实时数据提供了一个经济高效的途径。尽管数据在分析时被认为是有价值的,但潜在的、并且可以随时间积累的数据量之大令人望而生畏。大数据通常与数据挖掘、人工智能、机器学习、预测分析和其他处理密集型练习相关联,这些训练习侧重于从隐藏在大数据集内的模式中获得见解。换言之,如果不深入研究数据,这些见解可能无法从数据表面轻易看出。另一方面,“小”数据可以代表有限的数据池,无需进行深度处理即可提供见解。
1、“小”数据解决了当前正在发生的问题“
小”数据的一个简单示例是告诉您当前正在发生什么事情。例如,实时数据可以告诉您设备、机器或系统当前正在做什么。实时查看当前机器的运行情况,可以洞悉影响运行的实际故障。知道一台设备、机器或系统什么时候停止工作。
2、“小”数据不需要高级分析
大量数据可以从单台机器的大量历史数据(大数据)中获取,也可以从每台机器的最新数据(小数据)中获取。例如,通过分析一台机器的三年数据模式,可以获得大数据见解,而通过分析一组机器的一周数据状态和条件,可以获得“小”数据见解。
3、“小”数据可以利用现有基础设施
物联网可以在不同的规模层次上解决问题,从针对性到全面性。从“小”数据的角度来看,物联网仅可根据需要捕获所需数量的运营数据。无需对数据收集基础设施进行全面改革,直接从现有设备获取运行数据将极大地减少总体项目支出并最大限度地提高回报。物联网特别适合于在可能的范围内充分利用现有基础设施,以提取在该情境中所需的“小”数据。重点应放在获取正确的传感器数据以获得运营见解,而不是获取所有可能的传感器数据。
(上述文章阐述归伦茨科技公司所有,转载请注明出处,更多相关信息欢迎关注微信公众号:lenze_tech或微信号:lenzetech,点击http://www.lenzetech.com/)