Guide to GO evidence codes

2021-02-07  本文已影响0人  刘相培在努力学习中

Origin: http://geneontology.org/docs/guide-go-evidence-codes/

Evidence codes fall into six general categories:

Experimental evidence codes

  The EXPerimental (EXP) evidence codes indicate that there is evidence from an experiment directly supporting the annotation of the gene.

Phylogenetically-inferred annotations

  Phylogenetically-based annotations are derived from an explicit model of gain and loss of gene function at specific branches in a phylogenetic tree. Each inferred annotation can be traced to the direct experimental annotations that were used as the basis for that assertion. The GO Phylogenetic Annotation project is now the largest source of manually reviewed annotations in the GO knowledgebase, and it has substantially increased the number of annotations even in organisms that have been well-studied experimentally.

Computational analysis evidence codes

  Use of the computational analysis evidence codes indicates that the annotation is based on an in silico analysis of the gene sequence and/or other data as described in the cited reference. The evidence codes in this category also indicate a varying degree of curatorial input. The computational analysis evidence codes are:

Electronic annotation evidence code

‘Electronic’ (IEA) annotation are not manually reviewed (although the method itself is usually subjected to various quality assessments). IEA-supported annotations are ultimately based on either homology and/or other experimental or sequence information, but cannot generally be traced to an experimental source. Three methods make up the bulk of these annotations. The first, and most comprehensive, method is InterPro2GO, which is based on the curated association of a GO term with **a generalized sequence model **(‘signature’) of a group of homologous proteins. Protein sequences with a statistically significant match to a signature are assigned the GO terms associated with the signature, a form of homology inference. A second method is the computational conversion of UniProt controlled vocabulary terms (including Enzyme Commission numbers describing enzymatic activities, and UniProt keywords describing subcellular locations), to associated GO terms. Lastly, annotations are made based on 1:1 orthologs inferred from Ensembl gene trees, an approach which automatically transfers annotations found experimentally in one gene, to its 1:1 orthologs in the same taxonomic clade (e.g. those within the vertebrate clade, and separately, those within the plant clade).

上一篇下一篇

猜你喜欢

热点阅读