Python新世界动态语言Ruby Python

C++和Python为什么是好兄弟?因为C++可以为Python

2018-12-22  本文已影响2人  919b0c54458f

算法

要判断两首歌曲是否相似,需要比较它们的声音指纹。听上去很容易(实际上的确不难),但并不是初看上去那么直接。acoustid

计算出的声音指纹并不是一个数字,而是一个数字的数组,更准确地说,是一系列字符的数组。因此不能比较数字本身,而要比较数字中的字符。如果所有字符完全一致,则可以认为两首歌曲是同一个。如果

99% 的字符一致,则可以认为有 99% 的可能性两者相同,两者的差异可能是由编码问题(如一首歌用 192kbits/s 编码成

mp3,另一首用的是 128kbits/s)等造成的。

进群:960410445  获取神秘惊喜大礼包!

最初的 Python 实现

Bard

是用 Python 写的,所以第一版实现采用了 Python

的列表以整数数组的方式保存指纹。每次迭代过程中需要移位时,我会在其中一个指纹数组前面加个

0,然后迭代整个数组,依次比较每个元素。比较的方法是对两个元素执行异或操作,然后用一个算法来数出整数中的比特个数:

def count_bits_set(i):

i = i – ((i >> 1) & 0x55555555)

i = (i & 0x33333333) + ((i >> 2) & 0x33333333)

return (((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) & 0xffffffff) >> 24

我们把这个实现的速度作为参考值,称之为一倍速。

最终的优化

我还没做的一个非常明显的优化就是把 map 换成 vector,这样就无需每次调用 for_each 之前进行转换了。而且,vector 能提前分配空间,由于我知道在整个算法结束时 vector 的最终大小,因此我修改了代码,以便事先分配空间。

这个修改给了我最后一次提速,速度提高到 7998 倍,36680 首歌曲/秒,完全处理 1000 首歌曲的曲库仅需 13 秒。

结论

从这次经历中得到的一些值得记录的经验:

花点时间优化代码,会物有所值。

如果你使用 C++,并且能够使用现代编译器,那一定要用 C++17,它能编译出好得多、效率高得多的代码。Lambda、结构化绑定、constexpr 等都值得花时间去阅读。

让编译器为你做一些工作。你不需要花任何时间,它就能优化代码。

尽可能少地复制或移动数据。这样会降低速度,而且多数情况下只需在开发开始之前仔细考虑下数据结构就能避免。

可能时使用线程。

可能是最重要的一条经验:测量一切。没有测量就没办法提高。(也许可以,但你得不到准确的结论。)

上一篇下一篇

猜你喜欢

热点阅读