Monocle3单细胞拟时分析
很久没有做拟时了,之前在官网上看到这样一个消息,我想还是需要解读和演示下monocle3。
更多精彩内容请至我的公众号---KS科研分享与服务
http://cole-trapnell-lab.github.io/monocle-release/docs/
Monocle原理算法文章参考:
http://cole-trapnell-lab.github.io/monocle-release/papers/monocle2、monocle3 alpha废弃并不代表不能用了,结果不好了,只是Monocle3更新了功能,优化了分析而已,而且分析操作更简单、简洁(个人感觉)。话不多说,还是直接进入Monocle3,看看怎么进行单细胞拟时分析吧!
https://cole-trapnell-lab.github.io/monocle3/Monocle3主要可执行三种分析功能:
-
Clustering, classifying, and counting cells. Single-cell RNA-Seq experiments allow you to discover new (and possibly rare) subtypes of cells. Monocle 3 helps you identify them.
-
Constructing single-cell trajectories. In development, disease, and throughout life, cells transition from one state to another. Monocle 3 helps you discover these transitions.
-
Differential expression analysis. Characterizing new cell types and states begins with comparisons to other, better understood cells. Monocle 3 includes a sophisticated, but easy-to-use system for differential expression.
Monocle 3是基于R环境分析的,R版本需4.1.0或更高、Bioconductor版本3.14及以上和monocle3 1.2.7或更高版本才能访问最新功能。总之,重新安装下Monocle3,其他依赖包也更新下!注意:我安装的时候出现了问题,Matrix.utils包不适用于monocle3,按照BiocManager去安装更新,结果一众大包都不能正常加载了,后来更新了Rtools,总算正常了,可是monocle3依然不行。最后选择直接下载Matrix.utils压缩包安装,就成功了。
拟时推断:
image.png
image.png
可视化1:module
image.png
可视化2:gene expression
image.png
image.png
image.png
可视化3:分组
image.png