林轩田机器学习基石(1):The Learning Proble

2019-01-05  本文已影响16人  nlpjoe

欢迎关注公众号-AI圈终身学习。
公众号首页回复“机器学习”查看所有系列文章。


机器学习基石课程大概八周,分为四个部分:

课程主页:
http://www.csie.ntu.edu.tw/~htlin/

本节笔记Lecture 1-The Learning Problem包含内容如下:

一、什么是机器学习(What is Machine Learning)

机器学习和学习的异同是什么?首先学习和机器学习的共通性就是观察,他们也有差异性。

1.1 学习的流程

学习的主体是人,人通过观察(听、观、触觉)出发,经过脑袋的内化转化,变成有用的技能。流程图如下:

image

1.2 机器学习的流程

机器学习的主体是电脑,电脑通过观察资料(语料),经过电脑的CPU运作,变成对电脑有用的技能。流程图如下:

image

什么是“变成有用的技能”?技能就是在某种领域做事靠谱,比如

因此机器学习更准确的定义是:
通过观察计算有规律的数据,根据某种评价指标,提升电脑性能。
流程图如下:


image

1.3机器学习的三个关键要素

什么时候适合使用机器学习,林老师总结三个关键要素如下:

  1. 编程定义不明确,普通编程难以完成的任务
  2. 资料数据具有某种潜藏的规律,可以学习
  3. 有关于潜藏的规律资料数据

(测试题)下面哪种情况最适合使用机器学习?

  1. 预测小女孩下一次哭的时间是奇数还是偶数(No,没有规律)
  2. 判断一个图是否有环(No,可以编程定义明确)
  3. 预测下一个十年地球是否会毁灭(No,没有数据)
  4. 决定是否同意给用户办理信用卡(Yes,有用户历史行为数据且难以编程解决)

二、机器学习应用(Applications of Machine Learning)

除此之外,还有教育(流利说)、金融(信用卡办理)、医疗(药效预测)、法律(摘要)、娱乐(推荐系统)等各种行业。

二、机器学习组成部分(Components of Learning)

image

以信用卡办理为例,任务是给要用信用卡花钱的用户办理。机器学习组件如下:

机器学习整个流程可以表示如下:


image

比如以上面的信用卡办理为例,假设其中的hypothesis set H为:

我们的H中的假设有好有坏,我们通过演算法A去选择最好的一个作为g。

因此我们在机器学习中常说的模型是 演算法A+假设集合H

我们再以预测用户给歌曲打分(0-100分)为例,我们有:

训练数据D = 100万条((userid, songid), rating)对
输入X = 所有可能的(userid, songid)对
输出Y = [0, 100]
假设集合H = 将用户因素和歌曲因子相乘,并由所有可能的因素组合索引

我们以训练数据D为入口,通过演算法A选出H中最好的假设得到g。


image

四、机器学习和其他领域(Machine Learning and Other Fields)

image image image

总结来说:

五、总结

image

本节主要概括性的讲了机器学习的方方面面,高层笼统,概念清晰,没有太多技术性的东西。

上一篇下一篇

猜你喜欢

热点阅读