MATLAB|数据数据概率分布拟合相关

2018-02-20  本文已影响4065人  冰冻生菜ch

本文主要内容

01 数据的基本数字特征

数据的个数,均值,标准差,变异系数,散度,峰值,最大值,最小值


02 MATLAB数据分布拟合工具箱dfittool介绍

官网在线说明文档:https://cn.mathworks.com/help/stats/dfittool.html
17版distributionFitter代替了dfittool。

MATLAB自带的dfittool工具箱可以直观方便的考察数据的概率分布情况。
界面如下图所示,可以选择不同的图形类型:

PDF
CDF、Probility plot

021 使用方法

Step1:输入数据

dfittool(y)
dfittool(y,cens,freq,dsname)
creates a data set with the name dsname, using the data vector, y, censoring indicator, cens, and frequency vector, freq.

Step2:创建拟合

Distribution:    Normal
Log likelihood:  820.911
Domain:          -Inf < y < Inf
Mean:            0.737229
Variance:        0.0030936

Parameter  Estimate   Std. Err. 
mu          0.737229  0.00235459
sigma      0.0556202  0.00166719

Estimated covariance of parameter estimates:
       mu           sigma      
mu     5.54409e-06  1.29284e-19
sigma  1.29284e-19  2.77952e-06

022 注意:


03 常用的分布


04 数据统计概率分布的一些函数

函数 说明 说明
makedist Create probability distribution object 创建某种概率分布
fitdist Fit probability distribution object to data 根据原始数据得到某种分布的参数
distributionFitter,dfittool Open Distribution Fitter app 打开曲线拟合工具箱

041 参数估计

生成某些分布

常用的分布函数

Distribution Using Objects Legacy Functions Apps and UIs
Beta BetaDistribution betapdf,betacdf,betainv,betastat,betafit,betalike,betarnd Distribution Fitter,Probability Distribution Function,randtool
Burr Type XII BurrDistribution pdf,cdf,icdf,mle,random Distribution Fitter,Probability Distribution Function,randtool
Exponential ExponentialDistribution exppdf,expcdf,expinv,expstat,expfit,explike Distribution Fitter,Probability Distribution Function,randtool
Extreme value ExtremeValueDistribution evpdf,evcdf,evinv,evstat,evfit,evlike,evrnd Distribution Fitter,Probability Distribution Function,randtool
Gamma GammaDistribution gampdf,gamcdf,gaminv,gamstat,gamfit,gamlike,gamrnd Distribution Fitter,Probability Distribution Function,randtool
Generalized extreme value GeneralizedExtremeValueDistribution gevpdf,gevcdf,gevinv,gevstat,gevfit,gevlike,gevrnd Distribution Fitter,Probability Distribution Function,randtool
Generalized Pareto GeneralizedParetoDistribution gppdf,gpcdf,gpinv,gpstat,gpfit,gplike,gprnd Distribution Fitter,Probability Distribution Function,randtool
Half-Normal Distribution HalfNormalDistribution pdf,cdf,icdf,mle,random Distribution Fitter,Probability Distribution Function,randtool
Inverse Gaussian InverseGaussianDistribution pdf,cdf,icdf,mle,random Distribution Fitter
Logistic LogisticDistribution pdf,cdf,icdf,mle,random Distribution Fitter
Loglogistic LoglogisticDistribution pdf,cdf,icdf,mle,random Distribution Fitter
Lognormal LognormalDistribution lognpdf,logncdf,logninv,lognstat,lognfit,lognlike,lognrnd Distribution Fitter,Probability Distribution Function,randtool
Nakagami NakagamiDistribution pdf,cdf,icdf,mle,random Distribution Fitter
Normal (Gaussian) NormalDistribution normpdf,normcdf,norminv,normstat,normfit,normlike,normrnd Distribution Fitter,Probability Distribution Function,randtool
Piecewise linear PiecewiseLinearDistribution pdf,cdf,icdf,random
Rayleigh RayleighDistribution raylpdf,raylcdf,raylinv,raylstat,raylfit,raylrnd Distribution Fitter,Probability Distribution Function,randtool
Rician RicianDistribution pdf,cdf,icdf,mle,random Distribution Fitter
Stable StableDistribution pdf,cdf,icdf,mle,random Distribution Fitter,Probability Distribution Function,randtool
Triangular TriangularDistribution
Uniform (continuous) UniformDistribution unifpdf,unifcdf,unifinv,unifstat,unifit,unifrnd Probability Distribution Function,randtool
Weibull WeibullDistribution wblpdf,wblcdf,wblinv,wblstat,wblfit,wbllike,wblrnd Distribution Fitter,Probability Distribution Function,randtool

042 拟合检验:Hypothesis Tests

t-test, F-test, chi-square goodness-of-fit test

(1) 分布拟合检验Distribution Tests

(2) 主要介绍卡方拟合优度检验Chi-square goodness-of-fit test:chi2gof


[h,p,stats] = chi2gof(x,Name,Value)
x——要考察的数据
Name,Value——设置的参数和参数值
包括:
'NBins' — Number of bins
'Ctrs' — Bin centers
'Edges' — Bin edges
'CDF' — cdf of hypothesized distribution
'Expected' — Expected counts
'NParams' — Number of estimated parameters
'EMin' — Minimum expected count per bin

043 求分位值

norminv
gaminv
wblinv
x = icdf('name',p,A,B,C,D)
x = icdf(pd,p)

学习:http://blog.csdn.net/matlab_matlab/article/details/56272365


05 MATLAB程序示例

%% 检验正态分布
data;%要处理的数据:向量
[A_n,B_n]=normfit(data,0.05);%正态分布
nbins=20;emin=10;%设置检验参数
[h,p,stats]=chi2gof(data,'nbins',nbins,'emin',emin,'cdf',{@normcdf,A_n,B_n});%卡方检验

%% 检验Burr分布
data;%要处理的数据:向量
PD=fitdist(data,'burr'), %得到Burr分布的三个参数:PD.alpha,PD.c,PD.k
nbins=20;emin=10;%设置检验参数
[h,p,stats]=chi2gof(data,'nbins',nbins,'emin',emin,'cdf',PD);%卡方检验

06 参考资料

以上主要参考资料:mathworks官网,文中链接均可连接到mathworks官网。
强烈推荐书籍资料:《MATLAB统计分析与应用 40个案例分析》,作者:谢中华,北航出版社

搜索的时候发现了一个新的软件:Minitab,没用过,不知道怎么样。网址:http://www.minitab.com/zh-cn/

费了很大的劲,终于写完了O(∩_∩)O~。

上一篇 下一篇

猜你喜欢

热点阅读