2018-04-18 白痴学数学系列 - 线性编程 Simple
#Lecture 9: Linear Programming and ALM: Cash-Flow Matching
两种解决办法,其中一种叫Simplex
-
首先,Simplex的中文是单纯形法
-
Linear Programming Theory
- Formulation
- Duality
- Solution Methods
- Simplex Method
- Primal-Dual Interior-Point Method
-
LP: Asset Liability Manamgement: Cash-Flow Matching
- Basic setup
- Example
- Nonlinear scenario
- Stochastic liabilities
Formulation
其中A为一个m*n矩阵
若A行满秩
则可以找到基矩阵B,并寻找初始基解。
描述线性规划问题的常用和最直观形式是标准型。标准型包括以下三个部分:
一个需要极大化的线性函数,例如
{\displaystyle c_{1}x_{1}+c_{2}x_{2}}
c_1 x_1 + c_2 x_2
以下形式的问题约束,例如:
{\displaystyle a_{11}x_{1}+a_{12}x_{2}\leq b_{1}} a_{11} x_1 + a_{12} x_2 \le b_1
{\displaystyle a_{21}x_{1}+a_{22}x_{2}\leq b_{2}} a_{21} x_1 + a_{22} x_2 \le b_2
{\displaystyle a_{31}x_{1}+a_{32}x_{2}\leq b_{3}} a_{31} x_1 + a_{32} x_2 \le b_3
和非负变量,例如:
{\displaystyle x_{1}\geq 0} x_1 \ge 0
{\displaystyle x_{2}\geq 0} x_2 \ge 0
-
Simpler than any other optimization problem
-
With plenty of application (even in Finance)
-
Serve as a good starting point
Duality
对偶规划问题
- 对偶规划中:y 为人任意值
- 假设 B 是 (P) 的一个可行基,对应的可行解 x_B
Solution Methods
-
Simplex (Dantzig 1947)
-
Ellipsoid (Kachian 1979, the first algorithm known to be in polynomial time)
-
Interior Point (Karmakar 1984, the first practical polynomial time algorithm)
- Projection method (Karmakar 1984)
- Affine Method (Dikin 1967)
- Log-Barrier Method (many ...)
-
Interior Point method has been extended to NLP problems, has been the focus of research for optimization in the last few decades.
-
Although asymptotically superior, there is no clear winner between Simplex and Interior Point for LP problems: very much depends on the problem
Algorithm (Simplex Method)
相关链接:
Wiki - 线性规划