Cook R生物信息学与算法数据科学与R语言

【r<-ggplot2】修改x和y轴刻度

2018-12-21  本文已影响7人  王诗翔

这个R tutorial描述如何使用ggplot2包修改x和y轴刻度。同样,该文包含如何执行轴转换(对数化,开方等)和日期转换。

准备数据

使用ToothGrowth:

# Convert dose column dose from a numeric to a factor variable
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
head(ToothGrowth)
##    len supp dose
## 1  4.2   VC  0.5
## 2 11.5   VC  0.5
## 3  7.3   VC  0.5
## 4  5.8   VC  0.5
## 5  6.4   VC  0.5
## 6 10.0   VC  0.5

请确保 dose 变量变为因子类型。

示例图

library(ggplot2)
# Box plot 
bp <- ggplot(ToothGrowth, aes(x=dose, y=len)) + geom_boxplot()
bp
# scatter plot
sp<-ggplot(cars, aes(x = speed, y = dist)) + geom_point()
sp
img img

改变x和y轴刻度

下面是一些设置刻度的函数:

使用xlim()和ylim()函数

想要改变连续轴的范围,可以使用xlim()ylim()函数:

# x axis limits
sp + xlim(min, max)
# y axis limits
sp + ylim(min, max)

min和max是每个轴的最小值和最大值。

# Box plot : change y axis range
bp + ylim(0,50)
# scatter plots : change x and y limits
sp + xlim(5, 40)+ylim(0, 150)
img img

使用expand_limts()函数

注意,函数 expand_limits() 可以用于:

# set the intercept of x and y axis at (0,0)
sp + expand_limits(x=0, y=0)
# change the axis limits
sp + expand_limits(x=c(0,30), y=c(0, 150))
img img

使用scale_xx()函数

也可以使用函数scale_x_continuous()scale_y_continuous()分别改变x和y轴的刻度范围。 t

函数简单的形式如下:

scale_x_continuous(name, breaks, labels, limits, trans)
scale_y_continuous(name, breaks, labels, limits, trans)

下面是示例:

# Change x and y axis labels, and limits
sp + scale_x_continuous(name="Speed of cars", limits=c(0, 30)) +
  scale_y_continuous(name="Stopping distance", limits=c(0, 150))
img

轴转换

对数化和开方转换

内置转换函数:

使用示例:

# Default scatter plot
sp <- ggplot(cars, aes(x = speed, y = dist)) + geom_point()
sp
# Log transformation using scale_xx()
# possible values for trans : 'log2', 'log10','sqrt'
sp + scale_x_continuous(trans='log2') +
  scale_y_continuous(trans='log2')
# Sqrt transformation
sp + scale_y_sqrt()
# Reverse coordinates
sp + scale_y_reverse() 
img img img img

函数coord_trans()也可以用于轴坐标转换

# Possible values for x and y : "log2", "log10", "sqrt", ...
sp + coord_trans(x="log2", y="log2")
img

格式化轴刻度标签

这需要加载scales包:

# Log2 scaling of the y axis (with visually-equal spacing)
library(scales)
sp + scale_y_continuous(trans = log2_trans())
# show exponents
sp + scale_y_continuous(trans = log2_trans(),
    breaks = trans_breaks("log2", function(x) 2^x),
    labels = trans_format("log2", math_format(2^.x)))
img img

Note that many transformation functions are available using the scales package : log10_trans(), sqrt_trans(), etc. Use help(trans_new) for a full list.

格式化刻度标签:

library(scales)
# Percent
sp + scale_y_continuous(labels = percent)
# dollar
sp + scale_y_continuous(labels = dollar)
# scientific
sp + scale_y_continuous(labels = scientific)
img img img

显示对数化刻度标记

可以使用函数annotation_logticks()添加对数化刻度标记。

Note that, these tick marks make sense only for base 10

使用MASS包动物数据:

library(MASS)
head(Animals)
##                     body brain
## Mountain beaver     1.35   8.1
## Cow               465.00 423.0
## Grey wolf          36.33 119.5
## Goat               27.66 115.0
## Guinea pig          1.04   5.5
## Dipliodocus     11700.00  50.0

运行示例:

library(MASS) # to access Animals data sets
library(scales) # to access break formatting functions
# x and y axis are transformed and formatted
p2 <- ggplot(Animals, aes(x = body, y = brain)) + geom_point() +
     scale_x_log10(breaks = trans_breaks("log10", function(x) 10^x),
              labels = trans_format("log10", math_format(10^.x))) +
     scale_y_log10(breaks = trans_breaks("log10", function(x) 10^x),
              labels = trans_format("log10", math_format(10^.x))) +
     theme_bw()
# log-log plot without log tick marks
p2
# Show log tick marks
p2 + annotation_logticks()  
img img

Note that, default log ticks are on bottom and left.

设置显示的位置

# Log ticks on left and right
p2 + annotation_logticks(sides="lr")
# All sides
p2+annotation_logticks(sides="trbl")

字母含义:

格式化日期轴

使用函数 scale_x_date()scale_y_date()

样例数据

创建时间序列数据

df <- data.frame(
  date = seq(Sys.Date(), len=100, by="1 day")[sample(100, 50)],
  price = runif(50)
)
df <- df[order(df$date), ]
head(df)
##          date      price
## 33 2016-09-21 0.07245190
## 3  2016-09-23 0.51772443
## 23 2016-09-25 0.05758921
## 43 2016-09-26 0.99389551
## 45 2016-09-27 0.94858770
## 29 2016-09-28 0.82420890

绘制日期

# Plot with date
dp <- ggplot(data=df, aes(x=date, y=price)) + geom_line()
dp
img

格式化日期标记

使用scales包:

library(scales)
# Format : month/day
dp + scale_x_date(labels = date_format("%m/%d")) +
  theme(axis.text.x = element_text(angle=45))
# Format : Week
dp + scale_x_date(labels = date_format("%W"))
# Months only
dp + scale_x_date(breaks = date_breaks("months"),
  labels = date_format("%b"))
img img img

Note that, since ggplot2 v2.0.0, date and datetime scales now have date_breaks, date_minor_breaks and date_labels arguments so that you never need to use the long scales::date_breaks() or scales::date_format().

日期轴范围

使用数据:

head(economics)
##         date   pce    pop psavert uempmed unemploy
## 1 1967-07-01 507.4 198712    12.5     4.5     2944
## 2 1967-08-01 510.5 198911    12.5     4.7     2945
## 3 1967-09-01 516.3 199113    11.7     4.6     2958
## 4 1967-10-01 512.9 199311    12.5     4.9     3143
## 5 1967-11-01 518.1 199498    12.5     4.7     3066
## 6 1967-12-01 525.8 199657    12.1     4.8     3018

Create the plot of psavert by date :

# Plot with dates
dp <- ggplot(data=economics, aes(x=date, y=psavert)) + geom_line()
dp
# Axis limits c(min, max)
min <- as.Date("2002-1-1")
max <- max(economics$date)
dp+ scale_x_date(limits = c(min, max))
img img

进一步

阅读函数 scale_x_datetime()scale_y_datetime()的说明。

上一篇 下一篇

猜你喜欢

热点阅读