探究OkHttpClient的运行原理(2)
上一篇文章我们分析了 OkHttpClient 创建请求,以及相关队列操作的一些方法。具体可查看
探究Okhttp的运行原理(1)
此篇文章我们继续来看 OkHttpClient 另外一个重要的流程getResponseWithInterceptorChain() 方法去获取请求响应的。
在分析 getResponseWithInterceptorChain() 方法之前,先对OkHttpClient 的去请求的拦截顺序有个初步的了解。然后我们带着疑问去看,OkhttpClinet 是如何去实现这样方式的拦截呢并获取相应的响应?
详细了解 OkHttp 对请求处理之前先看下整体的拦截图。

图中所示拦截器的工作流程,其实拦截器主要是一层层拦截请求,然后再一层层返回处理响应,进行返回的工作。而这里面同时用到了 java 的一个很重要的设计模式:责任链模式。OkHttp 是如何去实现这样的责任链?带着这些疑问去查看源码。
getResponseWithInterceptorChain()
getResponseWithInterceptorChain()是 RealCall 类中的方法:
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
List<Interceptor> interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors());
interceptors.add(retryAndFollowUpInterceptor);
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
originalRequest, this, eventListener, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
return chain.proceed(originalRequest);
}
上面代码提炼出几点重要的信息:
1 创建了一系列的拦截器,并且放入一个集合中。
2 拦截器以及 request 请求作为相关参数创建了RealInterceptorChain 类的对象。
3 调用 RealInterceptorChain 对象的 proceed 方法,并且传入Request 的对象。
首先我们先来看看 RealInterceptorChain 这个类的构造方法以及proceed() 方法的调用:
public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
HttpCodec httpCodec, RealConnection connection, int index, Request request, Call call,
EventListener eventListener, int connectTimeout, int readTimeout, int writeTimeout) {
this.interceptors = interceptors;
this.connection = connection;
this.streamAllocation = streamAllocation;
this.httpCodec = httpCodec;
this.index = index;
this.request = request;
this.call = call;
this.eventListener = eventListener;
this.connectTimeout = connectTimeout;
this.readTimeout = readTimeout;
this.writeTimeout = writeTimeout;
}
@Override
public Response proceed(Request request) throws IOException {
return proceed(request, streamAllocation, httpCodec, connection);
}
public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
RealConnection connection) throws IOException {
if (index >= interceptors.size()) throw new AssertionError();
calls++;
// If we already have a stream, confirm that the incoming request will use it.
if (this.httpCodec != null && !this.connection.supportsUrl(request.url())) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must retain the same host and port");
}
// If we already have a stream, confirm that this is the only call to chain.proceed().
if (this.httpCodec != null && calls > 1) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must call proceed() exactly once");
}
// Call the next interceptor in the chain.
RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
writeTimeout);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next);
// Confirm that the next interceptor made its required call to chain.proceed().
if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) {
throw new IllegalStateException("network interceptor " + interceptor
+ " must call proceed() exactly once");
}
// Confirm that the intercepted response isn't null.
if (response == null) {
throw new NullPointerException("interceptor " + interceptor + " returned null");
}
if (response.body() == null) {
throw new IllegalStateException(
"interceptor " + interceptor + " returned a response with no body");
}
return response;
}
RealInterceptorChain 类构造方法初始化了一些相关信息,然后 proceed 方法会进行一些异常情况的判断。定位到下面的代码:
// Call the next interceptor in the chain.
RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
writeTimeout);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next);
这里会再次创建一个 RealInterceptorChain 对象,此时的 index 参数进行了+1操作,后续又取出 interceptors 拦截器集合中的第一个拦截对象。拦截器集合中第一个拦截器是
RetryAndFollowUpInterceptor,然后执行RetryAndFollowUpInterceptor 对象的 intercept 方法,并同时传入新创建的 RealInterceptorChain 对象(其中的传参是 index + 1)。接下来我们先看第一个拦截器 RetryAndFollowUpInterceptor 。
**第一个拦截器 : **
查看 RetryAndFollowUpInterceptor 的 intercept() 方法:
@Override public Response intercept(Chain chain) throws IOException {
Request request = chain.request();
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Call call = realChain.call();
EventListener eventListener = realChain.eventListener();
// 片段1
StreamAllocation streamAllocation = new StreamAllocation(client.connectionPool(),
createAddress(request.url()), call, eventListener, callStackTrace);
this.streamAllocation = streamAllocation;
int followUpCount = 0;
Response priorResponse = null;
while (true) {
if (canceled) {
streamAllocation.release();
throw new IOException("Canceled");
}
Response response;
boolean releaseConnection = true;
try {
// 片段3
response = realChain.proceed(request, streamAllocation, null, null);
releaseConnection = false;
} catch (RouteException e) {
// The attempt to connect via a route failed. The request will not have been sent.
if (!recover(e.getLastConnectException(), streamAllocation, false, request)) {
throw e.getLastConnectException();
}
releaseConnection = false;
continue;
} catch (IOException e) {
// An attempt to communicate with a server failed. The request may have been sent.
boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
if (!recover(e, streamAllocation, requestSendStarted, request)) throw e;
releaseConnection = false;
continue;
} finally {
// We're throwing an unchecked exception. Release any resources.
if (releaseConnection) {
streamAllocation.streamFailed(null);
streamAllocation.release();
}
}
// Attach the prior response if it exists. Such responses never have a body.
if (priorResponse != null) {
response = response.newBuilder()
.priorResponse(priorResponse.newBuilder()
.body(null)
.build())
.build();
}
Request followUp = followUpRequest(response, streamAllocation.route());
if (followUp == null) {
if (!forWebSocket) {
streamAllocation.release();
}
return response;
}
closeQuietly(response.body());
//片段2
if (++followUpCount > MAX_FOLLOW_UPS) {
streamAllocation.release();
throw new ProtocolException("Too many follow-up requests: " + followUpCount);
}
if (followUp.body() instanceof UnrepeatableRequestBody) {
streamAllocation.release();
throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());
}
if (!sameConnection(response, followUp.url())) {
streamAllocation.release();
streamAllocation = new StreamAllocation(client.connectionPool(),
createAddress(followUp.url()), call, eventListener, callStackTrace);
this.streamAllocation = streamAllocation;
} else if (streamAllocation.codec() != null) {
throw new IllegalStateException("Closing the body of " + response
+ " didn't close its backing stream. Bad interceptor?");
}
request = followUp;
priorResponse = response;
}
}
intercept 涉及到 StreamAllocation 类的创建,先看下 StreamAllocation 类的构造方法:
public StreamAllocation(ConnectionPool connectionPool, Address address, Call call,
EventListener eventListener, Object callStackTrace) {
this.connectionPool = connectionPool;
this.address = address;
this.call = call;
this.eventListener = eventListener;
this.routeSelector = new RouteSelector(address, routeDatabase(), call, eventListener);
this.callStackTrace = callStackTrace;
}
通过上述两段代码我们分析几个重要的片段:
片段1 :StreamAllocation 对象的创建(备注:后续拦截器的使用)。
片段2:定义了失败重连次数的最大值。达到最大值释放资源。
片段3:根据之前我们创建新的 RealInterceptorChain 对象进行了参数(index+1)可以知道,此时会去调用下一个拦截器。
总结下RetryAndFollowUpInterceptor的作用:
1 创建 StreamAllocation 对象;
2 调用 RealInterceptorChain 的 proceed 请求继续调用下一个拦截器请求;
3 根据请求结果判定是否需要进行重连;
**第二个拦截器 : BridgeInterceptor **
查看 BridgeInterceptor 类中的 intercept 方法:
final InternalCache cache;
@Override public Response intercept(Chain chain) throws IOException {
Request userRequest = chain.request();
Request.Builder requestBuilder = userRequest.newBuilder();
RequestBody body = userRequest.body();
if (body != null) {
MediaType contentType = body.contentType();
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString());
}
long contentLength = body.contentLength();
if (contentLength != -1) {
requestBuilder.header("Content-Length", Long.toString(contentLength));
requestBuilder.removeHeader("Transfer-Encoding");
} else {
requestBuilder.header("Transfer-Encoding", "chunked");
requestBuilder.removeHeader("Content-Length");
}
}
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", hostHeader(userRequest.url(), false));
}
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive");
}
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
// the transfer stream.
boolean transparentGzip = false;
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true;
requestBuilder.header("Accept-Encoding", "gzip");
}
List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
if (!cookies.isEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies));
}
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", Version.userAgent());
}
// 片段2
Response networkResponse = chain.proceed(requestBuilder.build());
HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
Response.Builder responseBuilder = networkResponse.newBuilder()
.request(userRequest);
//片段 1
if (transparentGzip
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
&& HttpHeaders.hasBody(networkResponse)) {
GzipSource responseBody = new GzipSource(networkResponse.body().source());
Headers strippedHeaders = networkResponse.headers().newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build();
responseBuilder.headers(strippedHeaders);
String contentType = networkResponse.header("Content-Type");
responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
}
return responseBuilder.build();
}
从上面的代码看出BridgeInterceptor这个拦截器的作用:
1 将 request 转化成能够进行网络访问的请求,例如请求头中添加Content-Type、Content-Length等属性。
2 代码"片段 1 "下方,返回的 Response 进行判断是否需要解压等,自动将返回内容转换,即响应内容的格式转换处理。
3 片段 2 代码处继续会对下一个拦截器进行调用。
第三个拦截器 : CacheInterceptor
CacheInterceptor拦截器,看名字可以猜测出应该是和缓存相关的。查看CacheInterceptor类中的intercept方法:
@Override public Response intercept(Chain chain) throws IOException {
// 片段1
Response cacheCandidate = cache != null
? cache.get(chain.request())
: null;
long now = System.currentTimeMillis();
//片段2
CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
Request networkRequest = strategy.networkRequest;
Response cacheResponse = strategy.cacheResponse;
if (cache != null) {
cache.trackResponse(strategy);
}
// 片段3
if (cacheCandidate != null && cacheResponse == null) {
closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
}
// 片段4
// If we're forbidden from using the network and the cache is insufficient, fail.
if (networkRequest == null && cacheResponse == null) {
return new Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(504)
.message("Unsatisfiable Request (only-if-cached)")
.body(Util.EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
}
// 片段5 没有网,但是有响应内容
// If we don't need the network, we're done.
if (networkRequest == null) {
return cacheResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build();
}
// 片段 6 networkRequest调用下一次拦截
Response networkResponse = null;
try {
networkResponse = chain.proceed(networkRequest);
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
closeQuietly(cacheCandidate.body());
}
}
// 片段7 如果响应的内容无变化,则返回缓存的Response,更新相关时间内容
// If we have a cache response too, then we're doing a conditional get.
if (cacheResponse != null) {
if (networkResponse.code() == HTTP_NOT_MODIFIED) {
Response response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers(), networkResponse.headers()))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis())
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
networkResponse.body().close();
// Update the cache after combining headers but before stripping the
// Content-Encoding header (as performed by initContentStream()).
cache.trackConditionalCacheHit();
cache.update(cacheResponse, response);
return response;
} else {
closeQuietly(cacheResponse.body());
}
}
// 片段8 存储返回的响应内容
Response response = networkResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
if (cache != null) {
if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
// Offer this request to the cache.
CacheRequest cacheRequest = cache.put(response);
return cacheWritingResponse(cacheRequest, response);
}
if (HttpMethod.invalidatesCache(networkRequest.method())) {
try {
cache.remove(networkRequest);
} catch (IOException ignored) {
// The cache cannot be written.
}
}
}
return response;
}
InternalCache类:
/**
* OkHttp's internal cache interface. Applications shouldn't implement this: instead use {@link
* okhttp3.Cache}.
*/
public interface InternalCache {
Response get(Request request) throws IOException;
}
Cache类:
@Nullable CacheRequest put(Response response) {
String requestMethod = response.request().method();
if (HttpMethod.invalidatesCache(response.request().method())) {
try {
remove(response.request());
} catch (IOException ignored) {
// The cache cannot be written.
}
return null;
}
if (!requestMethod.equals("GET")) {
// Don't cache non-GET responses. We're technically allowed to cache
// HEAD requests and some POST requests, but the complexity of doing
// so is high and the benefit is low.
return null;
}
if (HttpHeaders.hasVaryAll(response)) {
return null;
}
Entry entry = new Entry(response);
DiskLruCache.Editor editor = null;
try {
editor = cache.edit(key(response.request().url()));
if (editor == null) {
return null;
}
entry.writeTo(editor);
return new CacheRequestImpl(editor);
} catch (IOException e) {
abortQuietly(editor);
return null;
}
}
synchronized void trackResponse(CacheStrategy cacheStrategy) {
requestCount++;
if (cacheStrategy.networkRequest != null) {
// If this is a conditional request, we'll increment hitCount if/when it hits.
networkCount++;
} else if (cacheStrategy.cacheResponse != null) {
// This response uses the cache and not the network. That's a cache hit.
hitCount++;
}
}
CacheStrategy类:
public Factory(long nowMillis, Request request, Response cacheResponse) {
this.nowMillis = nowMillis;
this.request = request;
this.cacheResponse = cacheResponse;
if (cacheResponse != null) {
this.sentRequestMillis = cacheResponse.sentRequestAtMillis();
this.receivedResponseMillis = cacheResponse.receivedResponseAtMillis();
Headers headers = cacheResponse.headers();
for (int i = 0, size = headers.size(); i < size; i++) {
String fieldName = headers.name(i);
String value = headers.value(i);
if ("Date".equalsIgnoreCase(fieldName)) {
servedDate = HttpDate.parse(value);
servedDateString = value;
} else if ("Expires".equalsIgnoreCase(fieldName)) {
expires = HttpDate.parse(value);
} else if ("Last-Modified".equalsIgnoreCase(fieldName)) {
lastModified = HttpDate.parse(value);
lastModifiedString = value;
} else if ("ETag".equalsIgnoreCase(fieldName)) {
etag = value;
} else if ("Age".equalsIgnoreCase(fieldName)) {
ageSeconds = HttpHeaders.parseSeconds(value, -1);
}
}
}
}
/**
* Returns a strategy to satisfy {@code request} using the a cached response {@code response}.
*/
public CacheStrategy get() {
CacheStrategy candidate = getCandidate();
//片段1 如果网络不可用的情况下,相关数据为空构造返回
if (candidate.networkRequest != null && request.cacheControl().onlyIfCached()) {
// We're forbidden from using the network and the cache is insufficient.
return new CacheStrategy(null, null);
}
return candidate;
}
CacheStrategy(Request networkRequest, Response cacheResponse) {
this.networkRequest = networkRequest;
this.cacheResponse = cacheResponse;
}
/** Returns a strategy to use assuming the request can use the network. */
private CacheStrategy getCandidate() {
//片段1 如果没有Cache直接返回构造函数。
// No cached response.
if (cacheResponse == null) {
return new CacheStrategy(request, null);
}
//片段2 如果是https方法,同时没有握手。response也为空
// Drop the cached response if it's missing a required handshake.
if (request.isHttps() && cacheResponse.handshake() == null) {
return new CacheStrategy(request, null);
}
// If this response shouldn't have been stored, it should never be used
// as a response source. This check should be redundant as long as the
// persistence store is well-behaved and the rules are constant.
// 片段3 如果没有存储成功,也不会被使用,response也为空
if (!isCacheable(cacheResponse, request)) {
return new CacheStrategy(request, null);
}
// 片段4 没有Cache,
CacheControl requestCaching = request.cacheControl();
if (requestCaching.noCache() || hasConditions(request)) {
return new CacheStrategy(request, null);
}
CacheControl responseCaching = cacheResponse.cacheControl();
if (responseCaching.immutable()) {
return new CacheStrategy(null, cacheResponse);
}
long ageMillis = cacheResponseAge();
long freshMillis = computeFreshnessLifetime();
if (requestCaching.maxAgeSeconds() != -1) {
freshMillis = Math.min(freshMillis, SECONDS.toMillis(requestCaching.maxAgeSeconds()));
}
long minFreshMillis = 0;
if (requestCaching.minFreshSeconds() != -1) {
minFreshMillis = SECONDS.toMillis(requestCaching.minFreshSeconds());
}
long maxStaleMillis = 0;
if (!responseCaching.mustRevalidate() && requestCaching.maxStaleSeconds() != -1) {
maxStaleMillis = SECONDS.toMillis(requestCaching.maxStaleSeconds());
}
if (!responseCaching.noCache() && ageMillis + minFreshMillis < freshMillis + maxStaleMillis) {
Response.Builder builder = cacheResponse.newBuilder();
if (ageMillis + minFreshMillis >= freshMillis) {
builder.addHeader("Warning", "110 HttpURLConnection \"Response is stale\"");
}
long oneDayMillis = 24 * 60 * 60 * 1000L;
if (ageMillis > oneDayMillis && isFreshnessLifetimeHeuristic()) {
builder.addHeader("Warning", "113 HttpURLConnection \"Heuristic expiration\"");
}
return new CacheStrategy(null, builder.build());
}
// Find a condition to add to the request. If the condition is satisfied, the response body
// will not be transmitted.
String conditionName;
String conditionValue;
if (etag != null) {
conditionName = "If-None-Match";
conditionValue = etag;
} else if (lastModified != null) {
conditionName = "If-Modified-Since";
conditionValue = lastModifiedString;
} else if (servedDate != null) {
conditionName = "If-Modified-Since";
conditionValue = servedDateString;
} else {
return new CacheStrategy(request, null); // No condition! Make a regular request.
}
Headers.Builder conditionalRequestHeaders = request.headers().newBuilder();
Internal.instance.addLenient(conditionalRequestHeaders, conditionName, conditionValue);
Request conditionalRequest = request.newBuilder()
.headers(conditionalRequestHeaders.build())
.build();
return new CacheStrategy(conditionalRequest, cacheResponse);
}
对以上三个相关类的代码片段进行分析:
1 CacheInterceptor 的 片段1,请求的缓存 和 InternalCache 类有关,而根据 InternalCache 类的注释可以发现实现方法在父类 Cache 类中,Cache 类中 put() 方法把响应内容通过Entry 类和 DiskLruCache 类存储在本地中。
2 CacheInterceptor 类中 intercept() 方法,代码 片段2 主要通过CacheStrategy 的 getCandidate() 方法去获取相关实体类,可以看到 getCandidate() 方法中缓存的 response 为空的情况下。根据request 构造出 CacheStrategy 类并且返回。
3 CacheStrategy 类中的 get() 方法中同时定义了网络不可用的情况,此时构造 CacheStrategy 类传入的 Request 和 Response 都为 null 。
4 CacheInterceptor 类中 intercept() 方法,代码 片段3 没有缓存响应内容 则关闭对应的流。
5 CacheInterceptor 类中 intercept() 方法,代码 片段4 网络不可用同时没有缓存响应内同的情况下返回的结果。代买 片段5 没有网情况下,但是有缓存响应,则返回缓存的响应内容。
6 CacheInterceptor类中 intercept() 方法,代码 片段6 用缓存的Request 传参去调用下一个拦截器。
7 CacheInterceptor类中 intercept() 方法,代码片段7 回去对比缓存的相应内容,如果返回响应内容无变化,则只更新相关时间内容。
8 CacheInterceptor类中 intercept() 方法,代码片段8 存储返回的响应内容。
通过以上方法可以看出,CacheInterceptor有一套严格的缓存策略,多种判断同时也可以保证无网络情况下。能够拿到请求过的内容。体验性更好。接下来继续查看下一个拦截器。
**第四个拦截器 ConnectInterceptor **
查看 ConnectInterceptor 类:
/** Opens a connection to the target server and proceeds to the next interceptor. */
public final class ConnectInterceptor implements Interceptor {
public final OkHttpClient client;
public ConnectInterceptor(OkHttpClient client) {
this.client = client;
}
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
StreamAllocation streamAllocation = realChain.streamAllocation();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
boolean doExtensiveHealthChecks = !request.method().equals("GET");
HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
RealConnection connection = streamAllocation.connection();
return realChain.proceed(request, streamAllocation, httpCodec, connection);
}
}
intercept() 方法首先获取了 Request 和 StreamAllocation 的对象,而 StreamAllocation 的对象实则是在 RetryAndFollowUpInterceptor 中初始化的,当时并没有使用,现在通过 RealInterceptorChain 的对象传递获取。StreamAllocation 初始化了一些连接的组件,例如连接池,超时时间等。接下来通过 streamAllocation 获取了 HttpCodec 的对象和 RealConnection 的对象。传到了下一个拦截器。先看一下 StreamAllocation 类的 newStream() 方法:
public HttpCodec newStream(
OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
int connectTimeout = chain.connectTimeoutMillis();
int readTimeout = chain.readTimeoutMillis();
int writeTimeout = chain.writeTimeoutMillis();
int pingIntervalMillis = client.pingIntervalMillis();
boolean connectionRetryEnabled = client.retryOnConnectionFailure();
try {
RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
writeTimeout, pingIntervalMillis, connectionRetryEnabled, doExtensiveHealthChecks);
HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);
synchronized (connectionPool) {
codec = resultCodec;
return resultCodec;
}
} catch (IOException e) {
throw new RouteException(e);
}
}
RealConnection 的对象在 StreamAllocation 的 newStream() 方法中就已经创建成功了,调用 findHealthyConnection() 方法:
/**
* Finds a connection and returns it if it is healthy. If it is unhealthy the process is repeated
* until a healthy connection is found.
*/
private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled,
boolean doExtensiveHealthChecks) throws IOException {
while (true) {
RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
pingIntervalMillis, connectionRetryEnabled);
// If this is a brand new connection, we can skip the extensive health checks.
synchronized (connectionPool) {
if (candidate.successCount == 0) {
return candidate;
}
}
// Do a (potentially slow) check to confirm that the pooled connection is still good. If it
// isn't, take it out of the pool and start again.
if (!candidate.isHealthy(doExtensiveHealthChecks)) {
noNewStreams();
continue;
}
return candidate;
}
}
上面代码定义了一个死循环的方法继续去取 RealConnection 对象,只有 candidate.successCount 等于0的时候会跳出这个死循环,继续查看 findConnection 方法:
/**
* Returns a connection to host a new stream. This prefers the existing connection if it exists,
* then the pool, finally building a new connection.
*/
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
boolean foundPooledConnection = false;
RealConnection result = null;
Route selectedRoute = null;
Connection releasedConnection;
Socket toClose;
synchronized (connectionPool) {
if (released) throw new IllegalStateException("released");
if (codec != null) throw new IllegalStateException("codec != null");
if (canceled) throw new IOException("Canceled");
// Attempt to use an already-allocated connection. We need to be careful here because our
// already-allocated connection may have been restricted from creating new streams.
releasedConnection = this.connection;
toClose = releaseIfNoNewStreams();
if (this.connection != null) {
// We had an already-allocated connection and it's good.
result = this.connection;
releasedConnection = null;
}
if (!reportedAcquired) {
// If the connection was never reported acquired, don't report it as released!
releasedConnection = null;
}
if (result == null) {
// Attempt to get a connection from the pool.
Internal.instance.get(connectionPool, address, this, null);
if (connection != null) {
foundPooledConnection = true;
result = connection;
} else {
selectedRoute = route;
}
}
}
closeQuietly(toClose);
if (releasedConnection != null) {
eventListener.connectionReleased(call, releasedConnection);
}
if (foundPooledConnection) {
eventListener.connectionAcquired(call, result);
}
if (result != null) {
// If we found an already-allocated or pooled connection, we're done.
return result;
}
// If we need a route selection, make one. This is a blocking operation.
boolean newRouteSelection = false;
if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
newRouteSelection = true;
routeSelection = routeSelector.next();
}
synchronized (connectionPool) {
if (canceled) throw new IOException("Canceled");
if (newRouteSelection) {
// Now that we have a set of IP addresses, make another attempt at getting a connection from
// the pool. This could match due to connection coalescing.
List<Route> routes = routeSelection.getAll();
for (int i = 0, size = routes.size(); i < size; i++) {
Route route = routes.get(i);
Internal.instance.get(connectionPool, address, this, route);
if (connection != null) {
foundPooledConnection = true;
result = connection;
this.route = route;
break;
}
}
}
if (!foundPooledConnection) {
if (selectedRoute == null) {
selectedRoute = routeSelection.next();
}
// Create a connection and assign it to this allocation immediately. This makes it possible
// for an asynchronous cancel() to interrupt the handshake we're about to do.
route = selectedRoute;
refusedStreamCount = 0;
result = new RealConnection(connectionPool, selectedRoute);
acquire(result, false);
}
}
// If we found a pooled connection on the 2nd time around, we're done.
if (foundPooledConnection) {
eventListener.connectionAcquired(call, result);
return result;
}
// Do TCP + TLS handshakes. This is a blocking operation.
result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
connectionRetryEnabled, call, eventListener);
routeDatabase().connected(result.route());
Socket socket = null;
synchronized (connectionPool) {
reportedAcquired = true;
// Pool the connection.
Internal.instance.put(connectionPool, result);
// If another multiplexed connection to the same address was created concurrently, then
// release this connection and acquire that one.
if (result.isMultiplexed()) {
socket = Internal.instance.deduplicate(connectionPool, address, this);
result = connection;
}
}
closeQuietly(socket);
eventListener.connectionAcquired(call, result);
return result;
}
这里注意到 releasedConnection 这个常量,releasedConnection 会通过 StreamAllocation 对象的 connection 进行赋值,如果 connection 不为空则赋值,如果为空了则会通过 Internal.instance.get(connectionPool, address, this, null) 连接池中去获取。未获取到会继续通过result = new RealConnection(connectionPool, selectedRoute) 创建连接。同时调用到result.connect(...)的方法,最后通过Internal.instance.put(connectionPool, result) 方法放入 result 对象。这里我们就获取到了 RealConnection 对象。而result.connect(...) 方法则涉及相关网络连接,这里暂不在阐述。
这样我们就总结出ConnectInterceptor做了哪些事情:
1 创建一个 RealConnection 对象;
2 创建 HttpCodec 对象(主要用于请求和响应的编解码)
3 调用到下一个拦截器 CallServerInterceptor
**第五个拦截器 CallServerInterceptor **
查看 CallServerInterceptor 类:
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
HttpCodec httpCodec = realChain.httpStream();
StreamAllocation streamAllocation = realChain.streamAllocation();
RealConnection connection = (RealConnection) realChain.connection();
Request request = realChain.request();
long sentRequestMillis = System.currentTimeMillis();
realChain.eventListener().requestHeadersStart(realChain.call());
httpCodec.writeRequestHeaders(request);
realChain.eventListener().requestHeadersEnd(realChain.call(), request);
Response.Builder responseBuilder = null;
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
// If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
// Continue" response before transmitting the request body. If we don't get that, return
// what we did get (such as a 4xx response) without ever transmitting the request body.
if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
httpCodec.flushRequest();
realChain.eventListener().responseHeadersStart(realChain.call());
responseBuilder = httpCodec.readResponseHeaders(true);
}
if (responseBuilder == null) {
// Write the request body if the "Expect: 100-continue" expectation was met.
realChain.eventListener().requestBodyStart(realChain.call());
long contentLength = request.body().contentLength();
CountingSink requestBodyOut =
new CountingSink(httpCodec.createRequestBody(request, contentLength));
BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
realChain.eventListener()
.requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
} else if (!connection.isMultiplexed()) {
// If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
// from being reused. Otherwise we're still obligated to transmit the request body to
// leave the connection in a consistent state.
streamAllocation.noNewStreams();
}
}
httpCodec.finishRequest();
if (responseBuilder == null) {
realChain.eventListener().responseHeadersStart(realChain.call());
responseBuilder = httpCodec.readResponseHeaders(false);
}
Response response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
int code = response.code();
if (code == 100) {
// server sent a 100-continue even though we did not request one.
// try again to read the actual response
responseBuilder = httpCodec.readResponseHeaders(false);
response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
code = response.code();
}
realChain.eventListener()
.responseHeadersEnd(realChain.call(), response);
if (forWebSocket && code == 101) {
// Connection is upgrading, but we need to ensure interceptors see a non-null response body.
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
response = response.newBuilder()
.body(httpCodec.openResponseBody(response))
.build();
}
if ("close".equalsIgnoreCase(response.request().header("Connection"))
|| "close".equalsIgnoreCase(response.header("Connection"))) {
streamAllocation.noNewStreams();
}
if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
throw new ProtocolException(
"HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
}
return response;
}
CallServerInterceptor 的 intercept() 方法中做了以下事情:
1 拿到 HttpCodec,StreamAllocation,RealConnection ,Request 类可供后续网络连接使用;
2 httpCodec.writeRequestHeaders(request) 编码写入请求头;
3 request.body().writeTo(bufferedRequestBody) 写入请求体, httpCodec.finishRequest() 调用请求写入结束方法;
4 Response response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
获取到请求的响应内容;
5 response = response.newBuilder()
.body(httpCodec.openResponseBody(response))
.build(); 创建响应体内容;
6 if ("close".equalsIgnoreCase(response.request().header("Connection"))
|| "close".equalsIgnoreCase(response.header("Connection"))) {
streamAllocation.noNewStreams();
}
关闭相关的连接流,
/** Forbid new streams from being created on the connection that hosts this allocation. */
public void noNewStreams() {
Socket socket;
Connection releasedConnection;
synchronized (connectionPool) {
releasedConnection = connection;
socket = deallocate(true, false, false);
if (connection != null) releasedConnection = null;
}
closeQuietly(socket);
if (releasedConnection != null) {
eventListener.connectionReleased(call, releasedConnection);
}
}
7 返回response供上层拦截器继续处理。
至此所有的拦截器已经完成了他们的工作,到这里回过头再看看开头的拦截图流程图片:

可以看到在此责任链模式中 RealInterceptorChain 类以及其proceed() 方法扮演着重要的角色,index 参数每次进行 +1 保证了每次可以拦截器传到下一个进行拦截,最终再返回 Response 交给拦截器往上一个个进行处理。
到这里,OkHttp的整体源码基本就分析完了,联系上一篇文章
探究Okhttp的运行原理(1)
Okhttp一次网络请求的主要做了以下事情:
1 Call 对象的请求封装;
2 Dispatcher 对象对请求的分发;
3 getResponseWithInterceptorChain() 调用各个拦截器处理请求以及响应;