推荐系统评价指标:AUC和GAUC

2020-01-21  本文已影响0人  小新_XX

AUC是推荐系统中最常用的模型评价指标。基础概念要常看常新,最近复习了一遍AUC的概念,在此做个笔记。本文力求简洁系统地理解AUC的概念和计算方法,AUC在推荐/广告领域的局限性以及解决这一问题的另一个指标:Group AUC(GAUC)

1. 分类任务与混淆矩阵

认识auc的第一步,是看懂混淆矩阵:

预测\真实 1 0
1 TP FP
0 FN TN

2. ROC曲线与AUC

(b)方法二:
AUC=\frac{\sum_{ins_i \in 正例} rank_{ins_i}-\frac{M*(M+1)}{2}}{M*N}\tag3
其中M、N分别为正、负样本数。rank_{ins_i}是第i条样本ins_i的序号(概率得分从小到大排序,排在第rank个位置),ins_i \in 正例 表示只把正样本的序号加起来。
式(3)和式(2)的思想类似,分母都表示随机抽取一对正负样本;其分子的第一项把所有样本按预测概率从小到大排序,然后将其中正样本的序号进行求和。对于每一个正样本,其序号表示排在该正样本之前的样本个数,即该正样本的预测概率比多少个样本大;再减去其中的正样本个数,即得到该正样本的预测概率比多少个负样本大。因此分子可以写作\sum_{ins_i\in正例}(rank_{ins_i}-i), 其中i = 1, 2,...M,拆开来就得到(3)中的结果。

这样理解比较抽象,举例说明:(引用自 AUC的计算方法 -kingsam_)

样本 标签 预测概率
A 0 0.1
B 0 0.4
C 1 0.35
D 1 0.8

根据公式(2),首先列出所有的正负样本对:(C, A), (C, B), (D, A), (D, B), 计算得\sum_{M*N} I(P_{正},P_{负}) = 1+0+1+1=3; 因此AUC = \frac{3}{2*2}=0.75.

根据公式(3), 首先将所有样本按预测概率从小到大排序:A < C < B < D, 因此AUC = \frac{2 + 4 - 3}{2*2}=0.75

3. GAUC:Group AUC

实际计算时,权重可以设为每个用户view或click的次数,并且会滤掉单个用户全是正样本或全是负样本的情况。

参考文献

  1. https://www.zhihu.com/question/39840928?from=profile_question_card
  2. https://blog.csdn.net/hnu2012/article/details/87892368
  3. https://blog.csdn.net/qq_22238533/article/details/78666436
上一篇下一篇

猜你喜欢

热点阅读